Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rushika Perera is active.

Publication


Featured researches published by Rushika Perera.


PLOS Neglected Tropical Diseases | 2016

Vector Competence of American Mosquitoes for Three Strains of Zika Virus

James Weger-Lucarelli; Claudia Rückert; Nunya Chotiwan; Chilinh Nguyen; Selene M. Garcia Luna; Joseph R. Fauver; Brian D. Foy; Rushika Perera; William C. Black; Rebekah C. Kading; Gregory D. Ebel

In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus) emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC) of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.


PLOS Neglected Tropical Diseases | 2016

Metabolomics-Based Discovery of Small Molecule Biomarkers in Serum Associated with Dengue Virus Infections and Disease Outcomes

Natalia V. Voge; Rushika Perera; Sebabrata Mahapatra; Lionel Gresh; Angel Balmaseda; Maria A. Loroño-Pino; Amber S. Hopf-Jannasch; John T. Belisle; Eva Harris; Carol D. Blair; Barry J. Beaty

Background Epidemic dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) are overwhelming public health capacity for diagnosis and clinical care of dengue patients throughout the tropical and subtropical world. The ability to predict severe dengue disease outcomes (DHF/DSS) using acute phase clinical specimens would be of enormous value to physicians and health care workers for appropriate triaging of patients for clinical management. Advances in the field of metabolomics and analytic software provide new opportunities to identify host small molecule biomarkers (SMBs) in acute phase clinical specimens that differentiate dengue disease outcomes. Methodology/Principal Findings Exploratory metabolomic studies were conducted to characterize the serum metabolome of patients who experienced different dengue disease outcomes. Serum samples from dengue patients from Nicaragua and Mexico were retrospectively obtained, and hydrophilic interaction liquid chromatography (HILIC)-mass spectrometry (MS) identified small molecule metabolites that were associated with and statistically differentiated DHF/DSS, DF, and non-dengue (ND) diagnosis groups. In the Nicaraguan samples, 191 metabolites differentiated DF from ND outcomes and 83 differentiated DHF/DSS and DF outcomes. In the Mexican samples, 306 metabolites differentiated DF from ND and 37 differentiated DHF/DSS and DF outcomes. The structural identities of 13 metabolites were confirmed using tandem mass spectrometry (MS/MS). Metabolomic analysis of serum samples from patients diagnosed as DF who progressed to DHF/DSS identified 65 metabolites that predicted dengue disease outcomes. Differential perturbation of the serum metabolome was demonstrated following infection with different DENV serotypes and following primary and secondary DENV infections. Conclusions/Significance These results provide proof-of-concept that a metabolomics approach can be used to identify metabolites or SMBs in serum specimens that are associated with distinct DENV infections and disease outcomes. The differentiating metabolites also provide insights into metabolic pathways and pathogenic and immunologic mechanisms associated with dengue disease severity.


Science Translational Medicine | 2017

Rapid and specific detection of Asian- and African-lineage Zika viruses.

Nunya Chotiwan; Connie D. Brewster; Tereza Magalhaes; James Weger-Lucarelli; Nisha K. Duggal; Claudia Rückert; Chilinh Nguyen; Selene M. Garcia Luna; Joseph R. Fauver; Barb Andre; Meg Gray; William C. Black; Rebekah C. Kading; Gregory D. Ebel; Guillermina Kuan; Angel Balmaseda; Thomas Jaenisch; Ernesto T. A. Marques; Aaron C. Brault; Eva Harris; Brian D. Foy; Sandra L. Quackenbush; Rushika Perera; Joel Rovnak

A rapid, specific, sensitive, and inexpensive method has been developed that detects RNA from a Zika virus strain associated with the current outbreak. LAMP shines light on Zika virus Rapid and simple assays to detect infectious agents are key to tracking emerging epidemics. Chotiwan et al. describe a loop-mediated amplification (LAMP) assay that detects Zika virus RNA in human biofluids such as serum and semen as well as in mosquitoes, the insect vector that transmits the disease. This approach successfully distinguished the Asian-lineage Zika virus, associated with the current outbreak in the Americas, from the African-lineage Zika virus. This LAMP assay should enable tracking of the Asian-lineage strain as it moves into new geographical locations. A key advantage of this approach is detection without the need for RNA purification or copying RNA into DNA. Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers.


eLife | 2018

Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir

Alex C. Stabell; Nicholas R. Meyerson; Rebekah C. Gullberg; Alison R Gilchrist; Kristofor J Webb; William M. Old; Rushika Perera; Sara L. Sawyer

Human dengue viruses emerged from primate reservoirs, yet paradoxically dengue does not reach high titers in primate models. This presents a unique opportunity to examine the genetics of spillover versus reservoir hosts. The dengue virus 2 (DENV2) - encoded protease cleaves human STING, reducing type I interferon production and boosting viral titers in humans. We find that both human and sylvatic (reservoir) dengue viruses universally cleave human STING, but not the STING of primates implicated as reservoir species. The special ability of dengue to cleave STING is thus specific to humans and a few closely related ape species. Conversion of residues 78/79 to the human-encoded ‘RG’ renders all primate (and mouse) STINGs sensitive to viral cleavage. Dengue viruses may have evolved to increase viral titers in the dense and vast human population, while maintaining decreased titers and pathogenicity in the more rare animals that serve as their sustaining reservoir in nature.


PLOS Pathogens | 2018

Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes

Nunya Chotiwan; Barbara G. Andre; Irma Sanchez-Vargas; M. Nurul Islam; Jeffrey M. Grabowski; Amber S. Hopf-Jannasch; Erik S. Gough; Ernesto S. Nakayasu; Carol D. Blair; John T. Belisle; Catherine A. Hill; Richard J. Kuhn; Rushika Perera

We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.


PLOS ONE | 2017

Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica

Sheena Francis; Karla Saavedra-Rodriguez; Rushika Perera; Mark Paine; William C. Black; Rupika Delgoda

[This corrects the article DOI: 10.1371/journal.pone.0179673.].


Parasites & Vectors | 2018

First report of V1016G and S989P knockdown resistant (kdr) mutations in pyrethroid-resistant Sri Lankan Aedes aegypti mosquitoes

Sachini Dinusha Fernando; Menaka Hapugoda; Rushika Perera; Karla Saavedra-Rodriguez; William C. Black; Nissanka K. De Silva

BackgroundDengue is a serious arboviral disease in Sri Lanka with a large number of dengue fever (DF) cases every year. Control of the primary vector Aedes aegypti depends upon larval habitat source reduction and insecticide application. However, increases in the number of reported cases suggest the inefficiency of current control strategies and the possibility of resistance to currently used insecticides. Early detection of mutations in the voltage-gated sodium channel (vgsc) gene that confer knockdown resistance (kdr) to pyrethroid insecticides is important in resistance management in vector populations.ResultsResistance to pyrethroid insecticides was detected in the three populations studied. Polymerase chain reaction was used to detect the presence of two kdr mutations F1534C and V1016G. During this process a S989P mutation was also detected in pyrethroid-resistant Ae. aegypti populations. These mutations were found to be widespread and frequent in the collections studied.ConclusionsTo our knowledge, this study reveals for the first time the presence of V1016G and S989P mutant alleles in the vgsc of Sri Lankan Ae. aegypti populations. The spread of the mutant alleles throughout the country poses a threat of increased resistance to pyrethroids. Long-term insecticide applications and indiscriminate use of pyrethroids has led to the evolution of resistance. More strategic and diverse strategies, including novel insecticides with new modes of action and community participation, should be engaged for Ae. aegypti control.


PLOS Pathogens | 2018

Stearoly-CoA desaturase 1 differentiates early and advanced dengue virus infections and determines virus particle infectivity

Rebekah C. Gullberg; J. Jordan Steel; Venugopal Pujari; Joel Rovnak; Dean C. Crick; Rushika Perera

Positive strand RNA viruses, such as dengue virus type 2 (DENV2) expand and structurally alter ER membranes to optimize cellular communication pathways that promote viral replicative needs. These complex rearrangements require significant protein scaffolding as well as changes to the ER chemical composition to support these structures. We have previously shown that the lipid abundance and repertoire of host cells are significantly altered during infection with these viruses. Specifically, enzymes in the lipid biosynthesis pathway such as fatty acid synthase (FAS) are recruited to viral replication sites by interaction with viral proteins and displayed enhanced activities during infection. We have now identified that events downstream of FAS (fatty acid desaturation) are critical for virus replication. In this study we screened enzymes in the unsaturated fatty acid (UFA) biosynthetic pathway and found that the rate-limiting enzyme in monounsaturated fatty acid biosynthesis, stearoyl-CoA desaturase 1 (SCD1), is indispensable for DENV2 replication. The enzymatic activity of SCD1, was required for viral genome replication and particle release, and it was regulated in a time-dependent manner with a stringent requirement early during viral infection. As infection progressed, SCD1 protein expression levels were inversely correlated with the concentration of viral dsRNA in the cell. This modulation of SCD1, coinciding with the stage of viral replication, highlighted its function as a trigger of early infection and an enzyme that controlled alternate lipid requirements during early versus advanced infections. Loss of function of this enzyme disrupted structural alterations of assembled viral particles rendering them non-infectious and immature and defective in viral entry. This study identifies the complex involvement of SCD1 in DENV2 infection and demonstrates that these viruses alter ER lipid composition to increase infectivity of the virus particles.


PLOS Neglected Tropical Diseases | 2018

Variation in competence for ZIKV transmission by Aedes aegypti and Aedes albopictus in Mexico

Selene M. Garcia-Luna; James Weger-Lucarelli; Claudia Rückert; Reyes A. Murrieta; Michael C. Young; Alex D. Byas; Joseph R. Fauver; Rushika Perera; Adriana E. Flores-Suarez; Gustavo Ponce-Garcia; Américo D. Rodríguez; Gregory D. Ebel; William C. Black

Background ZIKV is a new addition to the arboviruses circulating in the New World, with more than 1 million cases since its introduction in 2015. A growing number of studies have reported vector competence (VC) of Aedes mosquitoes from several areas of the world for ZIKV transmission. Some studies have used New World mosquitoes from disparate regions and concluded that these have a variable but relatively low competence for the Asian lineage of ZIKV. Methodology/Principal findings Ten Aedes aegypti (L) and three Ae. albopictus (Skuse) collections made in 2016 from throughout Mexico were analyzed for ZIKV (PRVABC59—Asian lineage) VC. Mexican Ae. aegypti had high rates of midgut infection (MIR), dissemination (DIR) and salivary gland infection (SGIR) but low to moderate transmission rates (TR). It is unclear whether this low TR was due to heritable salivary gland escape barriers or to underestimating the amount of virus in saliva due to the loss of virus during filtering and random losses on surfaces when working with small volumes. VC varied among collections, geographic regions and whether the collection was made north or south of the Neovolcanic axis (NVA). The four rates were consistently lower in northeastern Mexico, highest in collections along the Pacific coast and intermediate in the Yucatan. All rates were lowest north of the NVA. It was difficult to assess VC in Ae. albopictus because rates varied depending upon the number of generations in the laboratory. Conclusions/Significance Mexican Ae. aegypti and Ae. albopictus are competent vectors of ZIKV. There is however large variance in vector competence among geographic sites and regions. At 14 days post infection, TR varied from 8–51% in Ae. aegypti and from 2–26% in Ae. albopictus.


Viruses | 2017

The 17th Rocky Mountain Virology Association Meeting

Joel Rovnak; Rushika Perera; Matthew W. Hopken; Jenna Read; Derrick M. Waller; Randall J. Cohrs

Since 2000, scientists and students from the greater Rocky Mountain region, along with invited speakers, both national and international, have gathered at the Mountain Campus of Colorado State University to discuss their area of study, present recent findings, establish or strengthen collaborations, and mentor the next generation of virologists and prionologists through formal presentations and informal discussions concerning science, grantsmanship and network development. This year, approximately 100 people attended the 17th annual Rocky Mountain Virology Association meeting, that began with a keynote presentation, and featured 29 oral and 35 poster presentations covering RNA and DNA viruses, prions, virus-host interactions and guides to successful mentorship. Since the keynote address focused on the structure and function of Zika and related flaviviruses, a special session was held to discuss RNA control. The secluded meeting at the foot of the Colorado Rocky Mountains gave ample time for in-depth discussions amid the peak of fall colors in the aspen groves while the random bear provided excitement. On behalf of the Rocky Mountain Virology Association, this report summarizes the >50 reports.

Collaboration


Dive into the Rushika Perera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory D. Ebel

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Rovnak

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nunya Chotiwan

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Foy

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge