Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell E. Coleman is active.

Publication


Featured researches published by Russell E. Coleman.


Malaria Journal | 2006

Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand

Russell E. Coleman; Jetsumon Sattabongkot; Sommai Promstaporm; Nongnuj Maneechai; Bousaraporn Tippayachai; Ampornpan Kengluecha; Nattawan Rachapaew; Gabriela E. Zollner; Robert Scott Miller; Jefferson A. Vaughan; Krongtong Thimasarn; Benjawan Khuntirat

ObjectiveThe main objective of this study was to compare the performance of nested PCR with expert microscopy as a means of detecting Plasmodium parasites during active malaria surveillance in western Thailand.MethodsThe study was performed from May 2000 to April 2002 in the village of Kong Mong Tha, located in western Thailand. Plasmodium vivax (PV) and Plasmodium falciparum (PF) are the predominant parasite species in this village, followed by Plasmodium malariae (PM) and Plasmodium ovale (PO). Each month, fingerprick blood samples were taken from each participating individual and used to prepare thick and thin blood films and for PCR analysis.ResultsPCR was sensitive (96%) and specific (98%) for malaria at parasite densities ≥ 500/μl; however, only 18% (47/269) of P. falciparum- and 5% (20/390) of P. vivax-positive films had parasite densities this high. Performance of PCR decreased markedly at parasite densities <500/μl, with sensitivity of only 20% for P. falciparum and 24% for P. vivax at densities <100 parasites/μl.ConclusionAlthough PCR performance appeared poor when compared to microscopy, data indicated that the discrepancy between the two methods resulted from poor performance of microscopy at low parasite densities rather than poor performance of PCR. These data are not unusual when the diagnostic method being evaluated is more sensitive than the reference method. PCR appears to be a useful method for detecting Plasmodium parasites during active malaria surveillance in Thailand.


Journal of Medical Entomology | 2004

Infectivity of Asymptomatic Plasmodium-Infected Human Populations to Anopheles dirus Mosquitoes in Western Thailand

Russell E. Coleman; Chalermpon Kumpitak; Alongkot Ponlawat; Nongnuj Maneechai; Vichit Phunkitchar; Nattawan Rachapaew; Gabriella Zollner; Jetsumon Sattabongkot

Abstract The infectivity of Plasmodium-infected humans in western Thailand was estimated by feeding laboratory-reared Anopheles dirus Peyton and Harrison mosquitoes on venous blood placed in a membrane-feeding apparatus. Between May 2000 and November 2001, a total of 6,494 blood films collected during an active malaria surveillance program were checked by microscopy for the presence of Plasmodium parasites: 3.3, 4.5, and 0.1% of slides were P. falciparum- (Pf), P. vivax- (Pv), and P. malariae (Pm)-positive. Venous blood was collected from 70, 52, 6, and 4 individuals infected with Pf, Pv, Pm, and mixed Pf/Pv, respectively, with 167 uninfected individuals serving as negative controls. Only 10% (7/70), 13% (7/52), and 0% (0/6) of membrane feeds conducted on Pf-, Pv-, and Pm-infected blood yielded infected mosquitoes. One percent (2/167) of microscope-negative samples infected mosquitoes; however, both samples were subsequently determined to be Pf-positive by polymerase chain reaction. Gametocytes were observed in only 29% (4/14) of the infectious samples. All infections resulted in low oocyst loads (average of 1.2 oocysts per positive mosquito). Only 4.5% (10/222) of mosquitoes fed on the seven infectious Pf samples developed oocysts, whereas 2.9% (9/311) of mosquitoes fed on the seven infectious Pv samples developed oocysts. The probability of a mosquito becoming infected with Pf or Pv after a blood meal on a member of the human population in Kong Mong Tha was estimated to be 1 in 6,700 and 1 in 5,700, respectively. The implications toward malaria transmission in western Thailand are discussed.


Antimicrobial Agents and Chemotherapy | 2003

Simple In Vitro Assay for Determining the Sensitivity of Plasmodium vivax Isolates from Fresh Human Blood to Antimalarials in Areas where P. vivax Is Endemic

Bruce Russell; Rachanee Udomsangpetch; Karl H. Rieckmann; Barbara M. Kotecka; Russell E. Coleman; Jetsumon Sattabongkot

ABSTRACT The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P. falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB+ serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% ± 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.


Antimicrobial Agents and Chemotherapy | 2006

Transmission-Blocking Activities of Quinine, Primaquine, and Artesunate

Kesinee Chotivanich; Jetsumon Sattabongkot; Rachanee Udomsangpetch; Sornchai Looareesuwan; Nicholas P. J. Day; Russell E. Coleman; Nicholas J. White

ABSTRACT The infectivity of Plasmodium falciparum gametocytes after exposure in vitro to quinine, artesunate, and primaquine was assessed in Anopheles dirus, a major vector of malaria in Southeast Asia. Mature gametocytes (stage 5) of a Thai isolate of P. falciparum were exposed to the drugs for 24 h in vitro before membrane feeding to A. dirus. After 10 days, the mosquito midguts were dissected and the oocysts were counted. In this system, artesunate showed the most potent transmission-blocking activity; the mean (standard deviation [SD]) 50% and 90% effective concentrations (EC50, and EC90, respectively, in nanograms per milliliter) were 0.1 (0.02) and 0.4 (0.15), respectively. Transmission-blocking activity of quinine and primaquine was observed at relatively high concentrations (SDs): EC50 of quinine, 642 (111) ng/ml; EC50 of primaquine, 181 (23) ng/ml; EC90 of quinine, 816 (96) ng/ml; EC90 of primaquine, 543 (43) ng/ml. Artesunate both prevents the maturation of immature P. falciparum gametocytes and reduces the transmission potential of mature gametocytes. Both of these effects may contribute to reducing malaria transmission.


Journal of Medical Entomology | 2000

Vector Competence of Peruvian Mosquitoes (Diptera: Culicidae) for Epizootic and Enzootic Strains of Venezuelan Equine Encephalomyelitis Virus

Michael J. Turell; James W. Jones; Michael R. Sardelis; David J. Dohm; Russell E. Coleman; Douglas M. Watts; Roberto Fernandez; Carlos Calampa; Terry A. Klein

Abstract Mosquitoes collected in the Amazon Basin, near Iquitos, Peru, were evaluated for their susceptibility to epizootic (IAB and IC) and enzootic (ID and IE) strains of Venezuelan equine encephalomyelitis (VEE) virus. After feeding on hamsters with a viremia of ≈108 plaque-forming units of virus per milliliter, Culex (Melanoconion) gnomatus Sallum, Huchings, & Ferreira, Culex (Melanoconion) vomerifer Komp, and Aedes fulvus (Wiedemann) were highly susceptible to infection with all four subtypes of VEE virus (infection rates ≥87%). Likewise, Psorophora albigenu (Peryassu) and a combination of Mansonia indubitans Dyar & Shannon and Mansonia titillans (Walker) were moderately susceptible to all four strains of VEE virus (infection rates ≥50%). Although Psorophora cingulata (Fabricius) and Coquillettidia venezuelensis (Theobald) were susceptible to infection with each of the VEE strains, these two species were not efficient transmitters of any of the VEE strains, even after intrathoracic inoculation, indicating the presence of a salivary gland barrier in these species. In contrast to the other species tested, both Culex (Melanoconion) pedroi Sirivanakarn & Belkin and Culex (Culex) coronator Dyar & Knab were nearly refractory to each of the strains of VEE virus tested. Although many of the mosquito species found in this region were competent laboratory vectors of VEE virus, additional studies on biting behavior, mosquito population densities, and vertebrate reservoir hosts of VEE virus are needed to incriminate the principal vector species.


Journal of Medical Entomology | 2006

Impact of phlebotomine sand flies on U.S. Military operations at Tallil Air Base, Iraq: 1. background, military situation, and development of a "Leishmaniasis Control Program".

Russell E. Coleman; Douglas A. Burkett; John L. Putnam; Van Sherwood; Jennifer Caci; Barton T. Jennings; Lisa P. Hochberg; Sharon L. Spradling; Edgar D. Rowton; Keith Blount; John Ploch; Grady Hopkins; Jo-lynne W. Raymond; Monica L. O'Guinn; John S. Lee; Peter J. Weina

Abstract One of the most significant modern day efforts to prevent and control an arthropod-borne disease during a military deployment occurred when a team of U.S. military entomologists led efforts to characterize, prevent, and control leishmaniasis at Tallil Air Base (TAB), Iraq, during Operation Iraqi Freedom. Soon after arriving at TAB on 22 March 2003, military entomologists determined that 1) high numbers of sand flies were present at TAB, 2) individual soldiers were receiving many sand fly bites in a single night, and 3) Leishmania parasites were present in 1.5% of the female sand flies as determined using a real-time (fluorogenic) Leishmania-generic polymerase chain reaction assay. The rapid determination that leishmaniasis was a specific threat in this area allowed for the establishment of a comprehensive Leishmaniasis Control Program (LCP) over 5 mo before the first case of leishmaniasis was confirmed in a U.S. soldier deployed to Iraq. The LCP had four components: 1) risk assessment, 2) enhancement of use of personal protective measures by all personnel at TAB, 3) vector and reservoir control, and 4) education of military personnel about sand flies and leishmaniasis. The establishment of the LCP at TAB before the onset of any human disease conclusively demonstrated that entomologists can play a critical role during military deployments.


The Journal of Infectious Diseases | 1999

Field Investigations of an Outbreak of Ebola Hemorrhagic Fever, Kikwit, Democratic Republic of the Congo, 1995: Arthropod Studies

Paul Reiter; Michael Turell; Russell E. Coleman; Barry R. Miller; Gary Maupin; Jorge Liz; Ana Kuehne; James F. Barth; Joan Geisbert; David J. Dohm; Jason Glick; James E. Pecor; Richard G. Robbins; Peter Jahrling; Clarence Peters; Thomas Ksiazek

During the final weeks of a 6-month epidemic of Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo, an extensive collection of arthropods was made in an attempt to learn more of the natural history of the disease. A reconstruction of the activities of the likely primary case, a 42-year-old man who lived in the city, indicated that he probably acquired his infection in a partly forested area 15 km from his home. Collections were made throughout this area, along the route he followed from the city, and at various sites in the city itself. No Ebola virus was isolated, but a description of the collections and the ecotopes involved is given for comparison with future studies of other outbreaks.


Journal of Medical Entomology | 2003

Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand.

Ratana Sithiprasasna; Pradith Mahapibul; Chumnong Noigamol; Michael J. Perich; Brian C. Zeichner; Bob Burge; Sarah L. W. Norris; James W. Jones; Sonya S. Schleich; Russell E. Coleman

Abstract In 1999 and 2000 we evaluated a lethal ovitrap (LO) for the control of Aedes aegypti (L.) in three villages in Ratchaburi Province, Thailand. Two blocks of 50 houses (a minimum of 250 m apart) served as treatment and control sites in each village, with each house in the treatment area receiving 10 LOs. Thirty houses in the center of each treatment and control block were selected as sampling sites, with larval and adult mosquito sampling initiated when LOs were placed. Sampling was conducted weekly in 10 of the 30 houses at each site, with each block of 10 houses sampled every third week. Sampling continued for 30 wk. Efficacy of the LO was evaluated by determining number of containers with larvae and/or pupae per house and number of adult mosquitoes collected inside each house. In 1999, the LO had a negligible impact on all measures of Ae. aegypti abundance that were assessed; however, fungal contamination of insecticide-impregnated strips may have been responsible for the low efficacy. In 2000, significant suppression was achieved based on changes in multiple entomologic criteria (containers with larvae, containers with pupae, and number of adult Ae. aegypti); however, control was not absolute and neither immature nor adult Ae. aegypti were ever eliminated completely. We conclude that the LO can reduce adult Ae. aegypti populations in Thailand; however, efficacy of the LO is lower than desired due primarily to the high number of alternative oviposition sites. LO efficacy may be improved when used as part of an integrated control program that places emphasis on reduction of adjacent larval habitats. Further studies are required to assess this issue.


Journal of Medical Entomology | 2004

Seasonal Distribution, Biology, and Human Attraction Patterns of Culicine Mosquitoes (Diptera: Culicidae) in a Forest near Puerto Almendras, Iquitos, Peru

James W. Jones; Michael J. Turell; Michael R. Sardelis; Douglas M. Watts; Russell E. Coleman; Roberto Fernandez; Faustino Carbajal; James E. Pecor; Carlos Calampa; Terry A. Klein

Abstract This study was conducted as part of a field ecology study of arboviral activity in the Amazon Basin, Peru, to determine the taxonomy, frequency, seasonal, and vertical distributions of potential mosquito vectors. In addition, the relative efficiency of human-landing collections and dry ice-baited Centers for Disease Control (CDC)-type light traps was determined for collecting mosquitoes. A total of 70 species of mosquitoes from 14 genera were collected from June 1996 through December 1997 at a forested site near Puerto Almendras, ≈20 km west-southwest of Iquitos, Peru. Three species [Psorophora (Janthinosoma) albigenu (Peryassu), Ochlerotatus (Ochlerotatus) fulvus (Wiedemann), and Ochlerotatus (Ochlerotatus) serratus (Theobald)] accounted for 70% of all mosquitoes captured in human-landing collections. Overall, biting activity occurred throughout the 24-h cycle but was higher during the daytime, primarily because of large populations of two day-biting species, Ps. albigenu and Oc. serratus. Oc. fulvus was active throughout the 24-h cycle but was more frequently collected during the evening. Oc. fulvus, Ps. albigenu, Culex (Melanoconion) pedroi Sirivanakarn & Belkin, and a mixture of Culex (Melanoconion) vomerifer Komp, and Culex (Melanoconion) gnomatos Sallum, Huchings & Ferreira, accounted for 73% of the mosquitoes captured during darkness by human collectors. In general, Ochlerotatus spp. and Psorophora spp. were more commonly captured in human-landing collections, whereas most Culex spp. were more frequently collected in the dry ice-baited CDC-type light traps. In general, mosquito populations were lowest from June through August when river levels were at their lowest. Two large population peaks occurred in November–December and in February–March as a result of “flood water” mosquito populations (e.g., Ps. albigenu). These data provide a better understanding of the taxonomy, population density, and seasonal distribution of potential mosquito vectors within the Amazon Basin region and allow for the development of appropriate vector and disease prevention strategies.


Journal of Chemical Ecology | 2011

Anointing Chemicals and Hematophagous Arthropods: Responses by Ticks and Mosquitoes to Citrus (Rutaceae) Peel Exudates and Monoterpene Components

Paul J. Weldon; John F. Carroll; Matthew Kramer; Robert H. Bedoukian; Russell E. Coleman; Ulrich R. Bernier

Some birds and mammals roll on or wipe themselves with the fruits or leaves of Citrus spp. or other Rutaceae. These anointing behaviors, as with anointing in general, are thought to function in the topical acquisition of chemicals that deter consumers, including hematophagous arthropods. We measured avoidance and other responses by nymphal lone star ticks (Amblyomma americanum) and adult female yellow fever mosquitoes (Aedes aegypti) to lemon peel exudate and to 24 volatile monoterpenes (racemates and isomers), including hydrocarbons, alcohols, aldehydes, acetates, ketones, and oxides, present in citrus fruits and leaves in order to examine their potential as arthropod deterrents. Ticks allowed to crawl up vertically suspended paper strips onto a chemically treated zone avoided the peel exudate and geraniol, citronellol, citral, carveol, geranyl acetate, α-terpineol, citronellyl acetate, and carvone. Ticks confined in chemically treated paper packets subsequently were impaired in climbing and other behaviors following exposure to the peel exudate and, of the compounds tested, most impaired to carveol. Mosquitoes confined in chambers with chemically treated feeding membranes landed and fed less, and flew more, when exposed to the peel exudate than to controls, and when exposed to aldehydes, oxides, or alcohols versus most hydrocarbons or controls. However, attraction by mosquitoes in an olfactometer was not inhibited by either lemon peel exudate or most of the compounds we tested. Our results support the notion that anointing by vertebrates with citrus-derived chemicals deters ticks. We suggest that some topically applied compounds are converted into more potent arthropod deterrents when oxidized on the integument of anointed animals.

Collaboration


Dive into the Russell E. Coleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriela E. Zollner

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Robert A. Wirtz

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Michael J. Turell

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Terry A. Klein

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Putnam

United States Air Force Academy

View shared research outputs
Top Co-Authors

Avatar

Kriangkrai Lerdthusnee

United States Department of the Army

View shared research outputs
Top Co-Authors

Avatar

Adeline S. T. Chan

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Allen L. Richards

Naval Medical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge