Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell J. Buono is active.

Publication


Featured researches published by Russell J. Buono.


Brain | 2013

Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

Dalia Kasperavičiūtė; Claudia B. Catarino; Mar Matarin; Costin Leu; Jan Novy; Anna Tostevin; Bárbara Leal; Ellen V. S. Hessel; Kerstin Hallmann; Michael S. Hildebrand; Hans-Henrik M. Dahl; Mina Ryten; Daniah Trabzuni; Adaikalavan Ramasamy; Saud Alhusaini; Colin P. Doherty; Thomas Dorn; Jörg Hansen; Günter Krämer; Bernhard J. Steinhoff; Dominik Zumsteg; Susan Duncan; Reetta Kälviäinen; Kai Eriksson; Anne-Mari Kantanen; Massimo Pandolfo; Ursula Gruber-Sedlmayr; Kurt Schlachter; Eva M. Reinthaler; Elisabeth Stogmann

Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26–1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.


Epilepsia | 2010

Potassium Channel Activity and Glutamate Uptake are Impaired in Astrocytes of Seizure Susceptible DBA/2 Mice

Mikhail Inyushin; Lilia Kucheryavykh; Yuriy V. Kucheryavykh; Colin G. Nichols; Russell J. Buono; Thomas N. Ferraro; Serguei N. Skatchkov; Misty J. Eaton

Purpose:  KCNJ10 encodes subunits of inward rectifying potassium (Kir) channel Kir4.1 found predominantly in glial cells within the brain. Genetic inactivation of these channels in glia impairs extracellular K+ and glutamate clearance and produces a seizure phenotype. In both mice and humans, polymorphisms and mutations in the KCNJ10 gene have been associated with seizure susceptibility. The purpose of the present study was to determine whether there are differences in Kir channel activity and potassium‐ and glutamate‐buffering capabilities between astrocytes from seizure resistant C57BL/6 (B6) and seizure susceptible DBA/2 (D2) mice that are consistent with an altered K+ channel activity as a result of genetic polymorphism of KCNJ10.


Neuropsychopharmacology | 2005

Confirmation of a major QTL influencing oral morphine intake in C57 and DBA mice using reciprocal congenic strains

Thomas N. Ferraro; Gregory T. Golden; George G. Smith; James F. Martin; Candice L. Schwebel; Glenn A. Doyle; Russell J. Buono; Wade H. Berrettini

C57BL/6 (B6) and DBA/2 (D2) mice exhibit disparate behavior when tested for voluntary morphine intake in a two-bottle choice drinking paradigm with B6 mice consuming 10 times more drug than D2 mice. Previous genetic mapping studies identified a locus, Mop2, on the proximal part of chromosome 10 that explained over half of the genetic variance in this mouse model of opioid self-administration. We constructed a set of reciprocal congenic strains between B6 and D2 mice in which the proximal portion of chromosome 10 has been introgressed from one strain onto the background of the other. We tested mice from this pair of reciprocal strains together with progenitor B6 and D2 mice in a two-bottle choice drinking paradigm with morphine and quinine. The results showed that introgression of chromosome 10 alleles from the B6 strain onto a D2 genetic background increased voluntary morphine intake four-fold compared to progenitor D2 mice. Preference for morphine was also increased significantly in D2.B6-Mop2 mice compared to progenitor D2 mice. Conversely, introgression of chromosome 10 alleles from the D2 strain onto a B6 genetic background decreased morphine intake by half compared to progenitor B6 mice in B6.D2 -Mop2 mice; however, high morphine preference was maintained in this congenic strain most likely due to strong quinine aversion. When quinine was eliminated from the control bottle, morphine preference in B6.D2-Mop2 mice was decreased significantly relative to B6 and D2.B6-Mop2 mice. Overall, these data confirm the existence of a gene(s) on chromosome 10 proximal to D10Mit124 that has a strong influence on the difference in morphine drinking behavior between B6 and D2 mice.


Neuropsychobiology | 2008

Association between Polymorphisms in the Vesicular Monoamine Transporter 1 Gene (VMAT1/SLC18A1) on Chromosome 8p and Schizophrenia

Falk W. Lohoff; Andrew E. Weller; Paul J. Bloch; Russell J. Buono; Glenn A. Doyle; Thomas N. Ferraro; Wade H. Berrettini

Linkage studies have suggested a susceptibility locus for schizophrenia (SZ) exists on chromosome 8p21–22. The vesicular monoamine transporter 1 gene (VMAT1), also known as SLC18A1, maps to this SZ susceptibility locus. Vesicular monoamine transporters are involved in the presynaptic vesicular packaging of monoamine neurotransmitters, which have been postulated to play a role in the etiology of SZ. Variations in the VMAT1 gene might affect transporter function and/or expression, and might be involved in the etiology of SZ. Genotypes of 62 patients with SZ and 188 control subjects were obtained for 4 missense single nucleotide polymorphisms (Thr4Pro, Thr98Ser, Thr136Ile, Val392Leu) and 2 noncoding single nucleotide polymorphisms (rs988713, rs2279709). All cases and controls were of European descent. The frequency of the minor allele of the Thr4Pro polymorphism was significantly increased in SZ patients when compared to controls (p = 0.0140; d.f. = 1; OR = 1.69; 95% CI = 1.11–2.57). Assuming a recessive mode of inheritance, the frequency of homozygote 4Pro carriers was significantly increased in the SZ patients when compared to controls (24 vs. 8%, respectively; p = 0.0006; d.f. = 1; OR = 3.74; 95% CI = 1.703–8.21). Haplotype analysis showed nominal significance for an individual risk haplotype (p = 0.013); however, after permutation correction, the global p value did not attain a statistically significant level (p = 0.07). Results suggest that variations in the VMAT1 gene may confer susceptibility to SZ in patients of European descent. Further studies are necessary to confirm this effect, and to elucidate the role of VMAT1 in central nervous system physiology and possible involvement in the genetic origins of SZ.


Epilepsy & Behavior | 2005

Recruitment rates and fear of phlebotomy in pediatric patients in a genetic study of epilepsy.

Dennis J. Dlugos; Theresa Scattergood; Thomas N. Ferraro; Wade H. Berrettinni; Russell J. Buono

This study examined participation rates and reasons for refusal in a genetic study of human epilepsy. The study enrolled children with epilepsy and their parents, and required signing informed consent, verbalizing assent, and giving a peripheral blood sample. One hundred sixty-eight children met inclusion criteria; 137 agreed to enroll (82%), and 31 refused (18%). Sixteen of thirty-one patients (52%) who refused cited fear of phlebotomy as the reason for refusal. All patients refusing due to fear of phlebotomy did not require blood tests for clinical purposes. As fear of phlebotomy is the primary reason for study refusal, obtaining DNA samples from a buccal swab or mouthwash protocol may be an alternative for some studies, although there are limitations to these methods. Further analysis of the factors influencing decisions to decline study enrollment is warranted. These data will help in the design of future genetic studies and may increase future participation rates.


Frontiers in Systems Neuroscience | 2014

BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice

Jason R. Gerstner; George G. Smith; Olivia Lenz; Isaac J. Perron; Russell J. Buono; Thomas N. Ferraro

The epilepsies are a heterogeneous group of neurological diseases defined by the occurrence of unprovoked seizures which, in many cases, are correlated with diurnal rhythms. In order to gain insight into the biological mechanisms controlling this phenomenon, we characterized time-of-day effects on electrical seizure threshold in mice. Male C57BL/6J wild-type mice were maintained on a 14/10 h light/dark cycle, from birth until 6 weeks of age for seizure testing. Seizure thresholds were measured using a step-wise paradigm involving a single daily electrical stimulus. Results showed that the current required to elicit both generalized and maximal seizures was significantly higher in mice tested during the dark phase of the diurnal cycle compared to mice tested during the light phase. This rhythm was absent in BMAL1 knockout (KO) mice. BMAL1 KO also exhibited significantly reduced seizure thresholds at all times tested, compared to C57BL/6J mice. Results document a significant influence of time-of-day on electrical seizure threshold in mice and suggest that this effect is under the control of genes that are known to regulate circadian behaviors. Furthermore, low seizure thresholds in BMAL1 KO mice suggest that BMAL1 itself is directly involved in controlling neuronal excitability.


PLOS ONE | 2011

In vitro and ex vivo analysis of CHRNA3 and CHRNA5 haplotype expression.

Glenn A. Doyle; Min-Jung Wang; Andrew D. Chou; John U. Oleynick; Steven E. Arnold; Russell J. Buono; Thomas N. Ferraro; Wade H. Berrettini

Genome-wide association studies implicate variations in CHRNA5 and CHRNA3 as being associated with nicotine addiction (NA). Multiple common haplotypes (“risk”, “mixed” and “protective”) exist in Europeans; however, high linkage disequilibrium between variations in CHRNA5 and CHRNA3 makes assigning causative allele(s) for NA difficult through genotyping experiments alone. We investigated whether CHRNA5 or CHRNA3 promoter haplotypes, associated previously with NA, might influence allelic expression levels. For in vitro analyses, promoter haplotypes were sub-cloned into a luciferase reporter vector. When assessed in BE(2)-C cells, luciferase expression was equivalent among CHRNA3 haplotypes, but the combination of deletion at rs3841324 and variation at rs503464 decreased CHRNA5 promoter-derived luciferase activity, possibly due to loss of an SP-1 and other site(s). Variation within the CHRNA5 5’UTR at rs55853698 and rs55781567 also altered luciferase expression in BE(2)-C cells. Allelic expression imbalance (AEI) from the “risk” or “protective” haplotypes was assessed in post-mortem brain tissue from individuals heterozygous at coding polymorphisms in CHRNA3 (rs1051730) or CHRNA5 (rs16969968). In most cases, equivalent allelic expression was observed; however, one individual showed CHRNA5 AEI that favored the “protective” allele and that was concordant with heterozygosity at polymorphisms ∼13.5 kb upstream of the CHRNA5 transcription start site. Putative enhancer activity from these distal promoter elements was assessed using heterologous promoter constructs. We observed no differences in promoter activity from the two distal promoter haplotypes examined, but found that the distal promoter region strongly repressed transcription. We conclude that CHRNA5 promoter variants may affect relative risk for NA in some heterozygous individuals.


Neuropsychopharmacology | 2008

Fine mapping of a major QTL influencing morphine preference in C57BL/6 and DBA/2 mice using congenic strains.

Glenn A. Doyle; Patrick J Furlong; Candice L. Schwebel; George G. Smith; Falk W. Lohoff; Russell J. Buono; Wade H. Berrettini; Thomas N. Ferraro

C57BL/6J (B6) and DBA/2J (D2) mice differ in behaviors related to substance abuse, including voluntary morphine consumption and preference in a two-bottle choice paradigm. Two major quantitative trait loci (QTL) for morphine consumption and preference exist between these strains on chromosomes (Chrs.) 6 and 10 when the two-bottle choice involves morphine in saccharin vs quinine in saccharin. Here, we report the refinement of the Chr. 10 QTL in subcongenic strains of D2.B6-Mop2 congenic mice described previously. With these subcongenic mouse strains, we have divided the introgressed region of Chr. 10 containing the QTL gene(s) into two segments, one between the acromere and Stxbp5 (in D2.B6-Mop2-P1 mice) and the other between marker D10Mit211 and marker D10Mit51 (in D2.B6-Mop2-D1 mice). We find that, similar to B6 mice, the D2.B6-Mop2-P1 congenic mice exhibit a strong preference for morphine over quinine, whereas D2.B6-Mop2-D1 congenic mice avoid morphine (similar to D2 mice). We have also created a line of double congenic mice, B6.D2-Mop2.Qui, which contains both Chr. 10 and Chr. 6 QTL. We find that they are intermediate in their morphine preference scores when compared with B6 and D2 animals. Overall, these data suggest that the gene(s) involved in morphine preference in the morphine-quinine two-bottle choice paradigm are contained within the proximal region of Chr. 10 (which harbors Oprm1) between the acromere and Stxbp5, as well as on distal Chr. 6 between marker D6Mit10 and the telomere.


Expert Review of Neurotherapeutics | 2006

Role of genetics in the diagnosis and treatment of epilepsy

Thomas N. Ferraro; Dennis J. Dlugos; Russell J. Buono

Epilepsy is a heterogeneous group of multifactorial diseases, the vast majority determined by interactions between many genes and environmental factors; however, there are rare epilepsy syndromes that can be caused by a single gene mutation and are inherited according to classical mendelian genetic principles. Finding disease-causing genetic mutations in epilepsy has provided new opportunities for aiding diagnosis and developing therapies. Thus, the discovery of KCNQ2 mutations in benign familial neonatal convulsions, SCN1A mutations in severe myoclonic epilepsy of infancy and in generalized epilepsy with febrile seizures plus, and CHRA4 and CHRB2 mutations in autosomal–dominant nocturnal frontal lobe epilepsy, has led to the establishment of epilepsy as a disorder of ion channel function and, furthermore, has led to the introduction of genetic tests that are available clinically to aid in diagnosis and treatment. At the present time, clinical use of genetic testing in epilepsy is greatest in suspected cases of severe myoclonic epilepsy of infancy, generalized epilepsy with febrile seizures plus, atypical cases of benign familial neonatal convulsions and ‘occult’ cases of autosomal–dominant nocturnal frontal lobe epilepsy without a family history. Overall, clinical use is limited by the low number of documented disease-associated mutations and the uncertain clinical significance of many test results. Further elucidation of the relationship between gene mutations and channel function will add value to genetic testing in the future, as will better characterization of the association between gene mutations and clinical phenotypes.


Pharmacogenomics | 2006

Challenges and opportunities in the application of pharmacogenetics to antiepileptic drug therapy

Thomas N. Ferraro; Dennis J. Dlugos; Russell J. Buono

The recent surge of interest in pharmacogenetics has provoked considerable thought regarding its relevance to antiepileptic drug (AED) therapy. Initial studies have focused on genes whose products play a putatively important role in AED pharmacology, particularly drug transporter proteins, drug metabolizing enzymes and ion channel subunits. However, there is a lack of good correspondence between results from different laboratories, and more recent findings are awaiting attempts at confirmation. Thus, there are currently no AED treatment guidelines that are informed by pharmacogenetic data. In order to begin to have clinical impact, standards specific to the conduct of future AED studies must be established. Of particular importance are the need for accurate epilepsy classification, appropriate AED selection and clear and objective assessment outcome measures. In addition, general standards for analysis and interpretation of genetic association data must be better codified and applied consistently across studies. Finally, extensive clinical research networks must be formulated and large numbers of well characterized patients must be recruited. Further development of these critical factors will optimize chances for overcoming current challenges posed by AED pharmacogenetic research and ultimately allow the realization of improved, more rational therapeutic strategies.

Collaboration


Dive into the Russell J. Buono's collaboration.

Top Co-Authors

Avatar

Thomas N. Ferraro

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George G. Smith

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Glenn A. Doyle

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dennis J. Dlugos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Falk W. Lohoff

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzett E. Ruiz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Chou

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Weller

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge