Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wade H. Berrettini is active.

Publication


Featured researches published by Wade H. Berrettini.


Neuropsychopharmacology | 2003

A Functional Polymorphism of the μ -Opioid Receptor Gene is Associated with Naltrexone Response in Alcohol-Dependent Patients

David W. Oslin; Wade H. Berrettini; Henry R. Kranzler; Helen M. Pettinati; Joel Gelernter; Joseph R. Volpicelli; Charles P. O'Brien

This study examined the association between two specific polymorphisms of the gene encoding the μ-opioid receptor and treatment outcomes in alcohol-dependent patients who were prescribed naltrexone or placebo. A total of 82 patients (71 of European descent) who were randomized to naltrexone and 59 who were randomized to placebo (all of European descent) in one of three randomized, placebo-controlled clinical trials of naltrexone were genotyped at the A+118G (Asn40Asp) and C+17T (Ala6Val) SNPs in the gene encoding the μ-opioid receptor (OPRM1). The association between genotype and drinking outcomes was measured over 12 weeks of treatment. In subjects of European descent, individuals with one or two copies of the Asp40 allele treated with naltrexone had significantly lower rates of relapse (p=0.044) and a longer time to return to heavy drinking (p=0.040) than those homozygous for the Asn40 allele. There were no differences in overall abstinence rates (p=0.611), nor were there differences in relapse rates or abstinence rates between the two genotype groups among those assigned to placebo. These preliminary results are consistent with prior literature demonstrating that the opioid system is involved in the reinforcing properties of alcohol and that allelic variation at OPRM1 is associated with differential response to a μ-receptor antagonist. If replicated, these results would help to identify alcohol-dependent individuals who may be most likely to respond to treatment with naltrexone.


Nature Medicine | 2006

Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia.

Chang-Gyu Hahn; Hoau-Yan Wang; Dan-Sung Cho; Konrad Talbot; Raquel E. Gur; Wade H. Berrettini; Kalindi Bakshi; Joshua Kamins; Steven J. Siegel; Robert Gallop; Steven E. Arnold

Recent molecular genetics studies implicate neuregulin 1 (NRG1) and its receptor erbB in the pathophysiology of schizophrenia. Among NRG1 receptors, erbB4 is of particular interest because of its crucial roles in neurodevelopment and in the modulation of N-methyl-D-aspartate (NMDA) receptor signaling. Here, using a new postmortem tissue–stimulation approach, we show a marked increase in NRG1-induced activation of erbB4 in the prefrontal cortex in schizophrenia. Levels of NRG1 and erbB4, however, did not differ between schizophrenia and control groups. To evaluate possible causes for this hyperactivation of erbB4 signaling, we examined the association of erbB4 with PSD-95 (postsynaptic density protein of 95 kDa), as this association has been shown to facilitate activation of erbB4. Schizophrenia subjects showed substantial increases in erbB4–PSD-95 interactions. We found that NRG1 stimulation suppresses NMDA receptor activation in the human prefrontal cortex, as previously reported in the rodent cortex. NRG1-induced suppression of NMDA receptor activation was more pronounced in schizophrenia subjects than in controls, consistent with enhanced NRG1-erbB4 signaling seen in this illness. Therefore, these findings suggest that enhanced NRG1 signaling may contribute to NMDA hypofunction in schizophrenia.


Molecular Psychiatry | 2008

α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking

Wade H. Berrettini; X. Yuan; Federica Tozzi; K. Song; Clyde Francks; H. Chilcoat; D. Waterworth; Pierandrea Muglia; V. Mooser

Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal. To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques. In these ∼7500 persons, a common haplotype in the CHRNA3–CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P=6.9 × 10−5). In a third set of European populations (n=∼7500) which had been genotyped for ∼6000 SNPs in ∼2000 genes, an allele in the same haplotype was associated with CPD (nominal P=2.6 × 10−6). These results (in three independent populations of European origin, totaling ∼15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND.


Molecular Psychiatry | 2010

Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes.

Josephine Elia; Xiaowu Gai; Hongbo M. Xie; Juan C. Perin; Elizabeth A. Geiger; Joe Glessner; M. D'Arcy; Rachel deBerardinis; Edward C. Frackelton; Cecilia Kim; Francesca Lantieri; B M Muganga; Li-San Wang; Toshinobu Takeda; Eric Rappaport; Struan F. A. Grant; Wade H. Berrettini; Marcella Devoto; Tamim H. Shaikh; Hakon Hakonarson; Peter S. White

Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder, but specific genetic factors underlying risk remain elusive. To assess the role of structural variation in ADHD, we identified 222 inherited copy number variations (CNVs) within 335 ADHD patients and their parents that were not detected in 2026 unrelated healthy individuals. Although no excess CNVs, either deletions or duplications, were found in the ADHD cohort relative to controls, the inherited rare CNV-associated gene set was significantly enriched for genes reported as candidates in studies of autism, schizophrenia and Tourette syndrome, including A2BP1, AUTS2, CNTNAP2 and IMMP2L. The ADHD CNV gene set was also significantly enriched for genes known to be important for psychological and neurological functions, including learning, behavior, synaptic transmission and central nervous system development. Four independent deletions were located within the protein tyrosine phosphatase gene, PTPRD, recently implicated as a candidate gene for restless legs syndrome, which frequently presents with ADHD. A deletion within the glutamate receptor gene, GRM5, was found in an affected parent and all three affected offspring whose ADHD phenotypes closely resembled those of the GRM5 null mouse. Together, these results suggest that rare inherited structural variations play an important role in ADHD development and indicate a set of putative candidate genes for further study in the etiology of ADHD.


Annals of Internal Medicine | 2010

National Institutes of Health State-of-the-Science Conference statement: preventing alzheimer disease and cognitive decline.

Martha L. Daviglus; Carl C. Bell; Wade H. Berrettini; Phyllis E. Bowen; E. Sander Connolly; Nancy J. Cox; Jacqueline Dunbar-Jacob; Evelyn Granieri; Gail Hunt; Kathleen McGarry; Dinesh Patel; Arnold L. Potosky; Elaine Sanders-Bush; Donald H. Silberberg; Maurizio Trevisan

The National Institute on Aging and the Office of Medical Applications of Research of the National Institutes of Health convened a State-of-the-Science Conference on 26-28 April 2010 to assess the available scientific evidence on prevention of cognitive decline and Alzheimer disease. This article provides the panels assessment of the available evidence.


Biological Psychiatry | 2000

Are schizophrenic and bipolar disorders related? A review of family and molecular studies.

Wade H. Berrettini

Schizophrenic and bipolar disorders are similar in several epidemiologic respects, including age at onset, lifetime risk, course of illness, worldwide distribution, risk for suicide, gender influence (men and women at equal risk for both groups of disorders), and genetic susceptibility. Despite these similarities, schizophrenia and bipolar disorders are typically considered to be separate entities, with distinguishing clinical characteristics, non-overlapping etiologies, and distinct treatment regimens. Over the past three decades, multiple family studies are consistent with greater nosologic overlap than previously acknowledged. Molecular linkage studies (conducted during the 1990s) reveal that some susceptibility loci may be common to both nosologic classes. This indicates that our nosology will require substantial revision during the next decade, to reflect this shared genetic susceptibility, as specific genes are identified.


Molecular Psychiatry | 2009

Genome-wide association study of bipolar disorder in European American and African American individuals

Erin N. Smith; Cinnamon S. Bloss; Thomas B. Barrett; Pamela L. Belmonte; Wade H. Berrettini; William Byerley; William Coryell; David Craig; Howard J. Edenberg; Eleazar Eskin; Tatiana Foroud; Elliot S. Gershon; Tiffany A. Greenwood; Maria Hipolito; Daniel L. Koller; William B. Lawson; Chunyu Liu; Falk W. Lohoff; Melvin G. McInnis; Francis J. McMahon; Daniel B. Mirel; Sarah S. Murray; Caroline M. Nievergelt; J. Nurnberger; Evaristus A. Nwulia; Justin Paschall; James B. Potash; John P. Rice; Thomas G. Schulze; W. Scheftner

To identify bipolar disorder (BD) genetic susceptibility factors, we conducted two genome-wide association (GWA) studies: one involving a sample of individuals of European ancestry (EA; n=1001 cases; n=1033 controls), and one involving a sample of individuals of African ancestry (AA; n=345 cases; n=670 controls). For the EA sample, single-nucleotide polymorphisms (SNPs) with the strongest statistical evidence for association included rs5907577 in an intergenic region at Xq27.1 (P=1.6 × 10−6) and rs10193871 in NAP5 at 2q21.2 (P=9.8 × 10−6). For the AA sample, SNPs with the strongest statistical evidence for association included rs2111504 in DPY19L3 at 19q13.11 (P=1.5 × 10−6) and rs2769605 in NTRK2 at 9q21.33 (P=4.5 × 10−5). We also investigated whether we could provide support for three regions previously associated with BD, and we showed that the ANK3 region replicates in our sample, along with some support for C15Orf53; other evidence implicates BD candidate genes such as SLITRK2. We also tested the hypothesis that BD susceptibility variants exhibit genetic background-dependent effects. SNPs with the strongest statistical evidence for genetic background effects included rs11208285 in ROR1 at 1p31.3 (P=1.4 × 10−6), rs4657247 in RGS5 at 1q23.3 (P=4.1 × 10−6), and rs7078071 in BTBD16 at 10q26.13 (P=4.5 × 10−6). This study is the first to conduct GWA of BD in individuals of AA and suggests that genetic variations that contribute to BD may vary as a function of ancestry.


American Journal of Human Genetics | 2005

Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q

Matthew B. McQueen; Bernie Devlin; Stephen V. Faraone; Vishwajit L. Nimgaonkar; Pamela Sklar; Jordan W. Smoller; Rami Abou Jamra; Margot Albus; Silviu-Alin Bacanu; Miron Baron; Thomas B. Barrett; Wade H. Berrettini; Deborah Blacker; William Byerley; Sven Cichon; Willam Coryell; Nicholas John Craddock; Mark J. Daly; J. Raymond DePaulo; Howard J. Edenberg; Tatiana Foroud; Michael Gill; T. Conrad Gilliam; Marian Lindsay Hamshere; Ian Richard Jones; Lisa Jones; S H Juo; John R. Kelsoe; David Lambert; Christoph Lange

Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.


American Journal of Human Genetics | 2003

Genomewide Linkage Analyses of Bipolar Disorder: A New Sample of 250 Pedigrees from the National Institute of Mental Health Genetics Initiative

Danielle M. Dick; Tatiana Foroud; Leah Flury; Elizabeth S. Bowman; Marvin J. Miller; N. Leela Rau; P. Ryan Moe; Nalini Samavedy; Rif S. El-Mallakh; Husseini K. Manji; Debra Glitz; Eric T. Meyer; Carrie Smiley; Rhoda Hahn; Clifford Widmark; Rebecca McKinney; Laura Sutton; Christos Ballas; Dorothy E. Grice; Wade H. Berrettini; William Byerley; William Coryell; R. DePaulo; Dean F. MacKinnon; Elliot S. Gershon; John R. Kelsoe; Francis J. McMahon; Dennis L. Murphy; Theodore Reich; William A. Scheftner

We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2003

Evidence for shared susceptibility in bipolar disorder and schizophrenia

Wade H. Berrettini

This article reviews evidence that bipolar disorder (BPD) and schizophrenia (SZ) share familial risk characteristics. The topic is introduced with a brief discussion of various shared epidemiologic characteristics of SZ and BPD. Family studies of BPD and SZ, conducted by multiple independent groups of investigators, are consistent with partial overlap in familial susceptibility. Given that the family study data suggest overlap in familial susceptibility for BPD and SZ, several confirmed linkages of BPD or SZ are reviewed, with the conclusion that there are five genomic regions for which evidence suggests shared genetic susceptibility of BPD and SZ. It is suggested that nosology must be changed to reflect the genetic origins of the multiple disorders that are collectively described by the terms BPD and SZ.

Collaboration


Dive into the Wade H. Berrettini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas N. Ferraro

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter H. Kaye

University of California

View shared research outputs
Top Co-Authors

Avatar

Allan S. Kaplan

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia M. Bulik

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Falk W. Lohoff

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John I. Nurnberger

Indiana University – Purdue University Indianapolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge