Russell J. Ferland
Albany Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell J. Ferland.
Science | 2008
Eric M. Morrow; Seung Yun Yoo; Steven W. Flavell; Tae Kyung Kim; Yingxi Lin; Robert Sean Hill; Nahit Motavalli Mukaddes; Soher Balkhy; Generoso G. Gascon; Asif Hashmi; Samira Al-Saad; Janice Ware; Robert M. Joseph; Rachel Greenblatt; Danielle Gleason; Julia A. Ertelt; Kira Apse; Adria Bodell; Jennifer N. Partlow; Brenda J. Barry; Hui Yao; Kyriacos Markianos; Russell J. Ferland; Michael E. Greenberg; Christopher A. Walsh
To find inherited causes of autism-spectrum disorders, we studied families in which parents share ancestors, enhancing the role of inherited factors. We mapped several loci, some containing large, inherited, homozygous deletions that are likely mutations. The largest deletions implicated genes, including PCDH10 (protocadherin 10) and DIA1 (deleted in autism1, or c3orf58), whose level of expression changes in response to neuronal activity, a marker of genes involved in synaptic changes that underlie learning. A subset of genes, including NHE9 (Na+/H+ exchanger 9), showed additional potential mutations in patients with unrelated parents. Our findings highlight the utility of “homozygosity mapping” in heterogeneous disorders like autism but also suggest that defective regulation of gene expression after neural activity may be a mechanism common to seemingly diverse autism mutations.
The Journal of Comparative Neurology | 2003
Russell J. Ferland; Timothy J. Cherry; Patricia O. Preware; Edward E. Morrisey; Christopher A. Walsh
Foxp2 and Foxp1 are recently identified members of the Fox family of winged‐helix/forkhead transcription factor genes. A recent study has found that mutations in human FOXP2 produce a severe language disorder. Since Foxp2 appears to be important in language, we wanted to explore the expression of this gene and a homologous gene, Foxp1, in the developing brain. In the present study, we investigated the time course and localization of Foxp2 and Foxp1 mRNA and protein expression in the developing and adult mouse using in situ hybridization and immunohistochemistry. Foxp2 and Foxp1 are expressed as early as E12.5 and persist into adulthood. Foxp2 and Foxp1 were most highly expressed in the developing and mature basal ganglia. Expression of Foxp2 was also observed in the cerebral cortex (layer 6), cerebellum (Purkinje neurons), and thalamus. Foxp1 expression was observed in the cerebral cortex (layers 3–5), hippocampus (CA1), and thalamus. Very little ventricular zone expression was observed for Foxp2 and Foxp1 and the expression of both of these genes occurred following neuronal migration, suggesting a role for these genes in postmigratory neuronal differentiation. Furthermore, we demonstrated the expression of FOXP2 in human fetal brain by RT‐PCR, in the perisylvian area of the left and right cerebral hemispheres, as well as in the frontal and occipital cortices. Overall, the widespread expression of Foxp2 in the developing brain makes it difficult to draw specific conclusions about which areas of Foxp2 expression are critical to human language function. J. Comp. Neurol. 460:266–279, 2003.
Journal of Medical Genetics | 2005
Lina Basel-Vanagaite; Revital Attia; Michal Yahav; Russell J. Ferland; Limor Anteki; Christopher A. Walsh; Tsviya Olender; Rachel Straussberg; Nurit Magal; Ellen Taub; Valerie Drasinover; Anna Alkelai; Dani Bercovich; Gideon Rechavi; Amos J. Simon; Mordechai Shohat
Background: The molecular basis of autosomal recessive non-syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. Objective: To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. Results: The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I-κB kinase/NFκB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. Conclusions: A previously unknown signal transduction pathway is important in human cognitive development.
Cilia | 2012
Yi-Chun Hsiao; Karina Tuz; Russell J. Ferland
Polarized vesicle trafficking is mediated by small GTPase proteins, such as Rabs and Arls/Arfs. These proteins have essential roles in maintaining normal cellular function, in part, through regulating intracellular trafficking. Moreover, these families of proteins have recently been implicated in the formation and function of the primary cilium. The primary cilium, which is found on almost every cell type in vertebrates, is an organelle that protrudes from the surface of the cell and functions as a signaling center. Interestingly, it has recently been linked to a variety of human diseases, collectively referred to as ciliopathies. The primary cilium has an exceptionally high density of receptors on its membrane that are important for sensing and transducing extracellular stimuli. Moreover, the primary cilium serves as a separate cellular compartment from the cytosol, providing for unique spatial and temporal regulation of signaling molecules to initiate downstream events. Thus, functional primary cilia are essential for normal signal transduction. Rabs and Arls/Arfs play critical roles in early cilia formation but are also needed for maintenance of ciliary function through their coordination with intraflagellar transport (IFT), a specialized trafficking system in primary cilia. IFT in cilia is pivotal for the proper movement of proteins into and out of this highly regulated organelle. In this review article, we explore the involvement of polarized vesicular trafficking in cilia formation and function, and discuss how defects in these processes could subsequently lead to the abnormalities observed in ciliopathies.
Human Molecular Genetics | 2009
Yi-Chun Hsiao; Zachary J. Tong; Jennifer E. Westfall; Jeffrey G. Ault; Patrick S. Page-McCaw; Russell J. Ferland
The primary non-motile cilium, a membrane-ensheathed, microtubule-bundled organelle, extends from virtually all cells and is important for development. Normal functioning of the cilium requires proper axoneme assembly, membrane biogenesis and ciliary protein localization, in tight coordination with the intraflagellar transport system and vesicular trafficking. Disruptions at any level can induce severe alterations in cell function, giving rise to a myriad of human genetic diseases known as ciliopathies. Here we show that the Abelson helper integration site 1 (Ahi1) gene, whose human ortholog is mutated in Joubert syndrome, regulates cilium formation via its interaction with Rab8a, a small GTPase critical for polarized membrane trafficking. We find that the Ahi1 protein localizes to a single centriole, the mother centriole, which becomes the basal body of the primary cilium. In order to determine whether Ahi1 functions in ciliogenesis, loss of function analysis of Ahi1 was performed in cell culture models of ciliogenesis. Knockdown of Ahi1 expression by shRNAi in cells or targeted deletion of Ahi1 (Ahi1 knockout mouse) leads to impairments in ciliogenesis. In Ahi1-knockdown cells, Rab8a is destabilized and does not properly localize to the basal body. Since Rab8a is implicated in vesicular trafficking, we next examined this process in Ahi1-knockdown cells. Defects in the trafficking of endocytic vesicles from the plasma membrane to the Golgi and back to the plasma membrane were observed in Ahi1-knockdown cells. Overall, our data indicate that the distribution and functioning of Rab8a is regulated by Ahi1, not only affecting cilium formation, but also vesicle transport.
American Journal of Human Genetics | 2014
Karina Tuz; Ruxandra Bachmann-Gagescu; Diana R. O'Day; Kiet Hua; Christine R. Isabella; Ian G. Phelps; Allan E. Stolarski; Brian J. O'Roak; Jennifer C. Dempsey; Charles Marques Lourenço; Abdulrahman Alswaid; Carsten G. Bönnemann; Livija Medne; Sheela Nampoothiri; Zornitza Stark; Richard J. Leventer; Meral Topçu; Ali Cansu; Sujatha Jagadeesh; Stephen Done; Gisele E. Ishak; Ian A. Glass; Jay Shendure; Stephan C. F. Neuhauss; Chad R. Haldeman-Englert; Dan Doherty; Russell J. Ferland
Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.
American Journal of Medical Genetics Part A | 2006
Russell J. Ferland; John Gaitanis; Kira Apse; Umadevi Tantravahi; Christopher A. Walsh; Volney L. Sheen
We report here on the first case of a child with bilateral periventricular nodular heterotopia (PNH) and Williams syndrome. Fluorescent in situ hybridization (FISH) analyses demonstrated a deletion of the elastin gene in the Williams syndrome critical region (WSCR). Further mapping by loss of heterozygosity analysis both by microsatellite marker and SNP profiling demonstrated a 1.5 Mb deletion beyond the telomeric end of the typical WSCR. No mutations were identified in the X‐linked filamin‐A gene (the most common cause of PNH). These findings suggest another dominant PNH disorder along chromosome 7q11.23.
The Journal of Neuroscience | 2012
Gewei Lian; Jie Lu; Jianjun Hu; Jingping Zhang; Sally H. Cross; Russell J. Ferland; Volney L. Sheen
Cytoskeleton-associated proteins play key roles not only in regulating cell morphology and migration but also in proliferation. Mutations in the cytoskeleton-associated gene filamin A (FlnA) cause the human disorder periventricular heterotopia (PH). PH is a disorder of neural stem cell development that is characterized by disruption of progenitors along the ventricular epithelium and subsequent formation of ectopic neuronal nodules. FlnA-dependent regulation of cytoskeletal dynamics is thought to direct neural progenitor migration and proliferation. Here we show that embryonic FlnA-null mice exhibited a reduction in brain size and decline in neural progenitor numbers over time. The drop in the progenitor population was not attributable to cell death or changes in premature differentiation, but to prolonged cell cycle duration. Suppression of FlnA led to prolongation of the entire cell cycle length, principally in M phase. FlnA loss impaired degradation of cyclin B1-related proteins, thereby delaying the onset and progression through mitosis. We found that the cdk1 kinase Wee1 bound FlnA, demonstrated increased expression levels after loss of FlnA function, and was associated with increased phosphorylation of cdk1. Phosphorylation of cdk1 inhibited activation of the anaphase promoting complex degradation system, which was responsible for cyclin B1 degradation and progression through mitosis. Collectively, our results demonstrate a molecular mechanism whereby FlnA loss impaired G2 to M phase entry, leading to cell cycle prolongation, compromised neural progenitor proliferation, and reduced brain size.
Brain Research | 1994
Robert C. Drugan; Anthony S. Basile; Jeoung-Hee Ha; Russell J. Ferland
Control over stress protects against many of the deleterious effects of stress exposure, but the endogenous mediators responsible for these prophylactic effects have remained elusive. Using behavioral pharmacology, in vitro radioligand binding and neurochemical analyses, we demonstrate that exposure to escapable stress results in brain and behavior changes reminiscent of benzodiazepine administration. The stress control group shows significant protection against picrotoxinin-induced seizures, reductions in [35S]t-butylbicyclophosphorothionate (TBPS) binding and a 3-fold increase of benzodiazepine-like substances in brain in comparison to both yoked-inescapable shock and non-shock controls. These observations suggest that coping behavior leads to the release of endogenous benzodiazepine-like compounds in brain which protect the organism from stress pathology.
The Journal of Neuroscience | 2010
Jennifer E. Westfall; Carlton Hoyt; Qin Liu; Yi-Chun Hsiao; Eric A. Pierce; Patrick S. Page-McCaw; Russell J. Ferland
Vertebrate photoreceptors have a modified cilium composed of a basal body, axoneme and outer segment. The outer segment includes stacked membrane discs, containing opsin and the signal transduction apparatus mediating phototransduction. In photoreceptors, two distinct classes of vesicles are trafficked. Synaptic vesicles are transported down the axon to the synapse, whereas opsin-containing vesicles are transported to the outer segment. The continuous replacement of the outer segments imposes a significant biosynthetic and trafficking burden on the photoreceptors. Here, we show that Ahi1, a gene that when mutated results in the neurodevelopmental disorder, Joubert syndrome (JBTS), is required for photoreceptor sensory cilia formation and the development of photoreceptor outer segments. In mice with a targeted deletion of Ahi1, photoreceptors undergo early degeneration. Whereas synaptic proteins are correctly trafficked, photoreceptor outer segment proteins fail to be transported appropriately or are significantly reduced in their expression levels (i.e., transducin and Rom1) in Ahi1−/− mice. We show that vesicular targeting defects in Ahi1−/− mice are cilium specific, and our evidence suggests that the defects are caused by a decrease in expression of the small GTPase Rab8a, a protein required for accurate polarized vesicular trafficking. Thus, our results suggest that Ahi1 plays a role in stabilizing the outer segment proteins, transducin and Rom1, and that Ahi1 is an important component of Rab8a-mediated vesicular trafficking in photoreceptors. The retinal degeneration observed in Ahi1−/− mice recapitulates aspects of the retinal phenotype observed in patients with JBTS and suggests the importance of Ahi1 in photoreceptor function.