Volney L. Sheen
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Volney L. Sheen.
Nature Genetics | 2004
Volney L. Sheen; Vijay S. Ganesh; Meral Topçu; Guillaume Sébire; Adria Bodell; R. Sean Hill; P. Ellen Grant; Yin Yao Shugart; Jaime Imitola; Samia J. Khoury; Renzo Guerrini; Christopher A. Walsh
Disruption of human neural precursor proliferation can give rise to a small brain (microcephaly), and failure of neurons to migrate properly can lead to an abnormal arrest of cerebral cortical neurons in proliferative zones near the lateral ventricles (periventricular heterotopia). Here we show that an autosomal recessive condition characterized by microcephaly and periventricular heterotopia maps to chromosome 20 and is caused by mutations in the gene ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2). By northern-blot analysis, we found that mouse Arfgef2 mRNA levels are highest during embryonic periods of ongoing neuronal proliferation and migration, and by in situ hybridization, we found that the mRNA is widely distributed throughout the embryonic central nervous system (CNS). ARFGEF2 encodes the large (>200 kDa) brefeldin A (BFA)-inhibited GEF2 protein (BIG2), which is required for vesicle and membrane trafficking from the trans-Golgi network (TGN). Inhibition of BIG2 by BFA, or by a dominant negative ARFGEF2 cDNA, decreases cell proliferation in vitro, suggesting a cell-autonomous regulation of neural expansion. Inhibition of BIG2 also disturbed the intracellular localization of such molecules as E-cadherin and β-catenin by preventing their transport from the Golgi apparatus to the cell surface. Our findings show that vesicle trafficking is an important regulator of proliferation and migration during human cerebral cortical development.
Neurology | 2005
Volney L. Sheen; An Jansen; Ming-Hui Chen; Elena Parrini; Timothy R. Morgan; R. Ravenscroft; Vijay S. Ganesh; T. Underwood; James S. Wiley; Richard J. Leventer; R. R. Vaid; D. E. Ruiz; G. M. Hutchins; J. Menasha; Judith P. Willner; Y. Geng; Karen W. Gripp; L. Nicholson; Elizabeth Berry-Kravis; Adria Bodell; Kira Apse; Robert Sean Hill; François Dubeau; F. Andermann; James Barkovich; Eva Andermann; Yin Yao Shugart; Pierre Thomas; Maurizio Viri; Pierangelo Veggiotti
Objective: To define the clinical, radiologic, and genetic features of periventricular heterotopia (PH) with Ehlers-Danlos syndrome (EDS). Methods: Exonic sequencing and single stranded conformational polymorphism (SSCP) analysis was performed on affected individuals. Linkage analysis using microsatellite markers on the X-chromosome was performed on a single pedigree. Western blotting evaluated for loss of filamin A (FLNA) protein and Southern blotting assessed for any potential chromosome rearrangement in this region. Results: The authors report two familial cases and nine additional sporadic cases of the EDS-variant form of PH, which is characterized by nodular brain heterotopia, joint hypermobility, and development of aortic dilatation in early adulthood. MRI typically demonstrated bilateral nodular PH, indistinguishable from PH due to FLNA mutations. Exonic sequencing or SSCP analyses of FLNA revealed a 2762 delG single base pair deletion in one affected female. Another affected female harbored a C116 single point mutation, resulting in an A39G change. A third affected female had a 4147 delG single base pair deletion. One pedigree with no detectable exonic mutation demonstrated positive linkage to the FLNA locus Xq28, an affected individual in this family also had no detectable FLNA protein, but no chromosomal rearrangement was detected. Conclusion: These results suggest that the Ehlers-Danlos variant of periventricular heterotopia (PH), in part, represents an overlapping syndrome with X-linked dominant PH due to filamin A mutations.
Human Molecular Genetics | 2009
Russell J. Ferland; Luis Federico Bátiz; Jason Neal; Gewei Lian; Elizabeth A. Bundock; Jie Lu; Yi Chun Hsiao; Rachel E. Diamond; Davide Mei; Alison H. Banham; Philip J. Brown; Charles R. Vanderburg; Jeffrey T. Joseph; Jonathan L. Hecht; Rebecca D. Folkerth; Renzo Guerrini; Christopher A. Walsh; Esteban M. Rodríguez; Volney L. Sheen
Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron, 21, 1315-1325, 1998; Sheen et al. in Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat. Genet., 36, 69-76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in MEKK4 signaling regulates filamin expression and neuronal migration. Neuron, 52, 789-801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (alpha-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventricular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell adhesion and loss of neuroependymal integrity.
Neurology | 2005
Bernard S. Chang; Jenny Ly; B. Appignani; Adria Bodell; Kira Apse; R. S. Ravenscroft; Volney L. Sheen; M. J. Doherty; David B. Hackney; Margaret G. O’Connor; Albert M. Galaburda; Christopher A. Walsh
Objective: To define the behavioral profile of periventricular nodular heterotopia (PNH), a malformation of cortical development that is associated with seizures but reportedly normal intelligence, and to correlate the results with anatomic and clinical features of this disorder. Methods: Ten consecutive subjects with PNH, all with epilepsy and at least two periventricular nodules, were studied with structural MRI and neuropsychological testing. Behavioral results were statistically analyzed for correlation with other features of PNH. Results: Eight of 10 subjects had deficits in reading skills despite normal intelligence. Processing speed and executive function were also impaired in some subjects. More marked reading difficulties were seen in subjects with more widely distributed heterotopia. There was no correlation between reading skills and epilepsy severity or antiepileptic medication use. Conclusion: The neuronal migration disorder of periventricular nodular heterotopia is associated with an impairment in reading skills despite the presence of normal intelligence.
The Neurologist | 2008
Trudy Pang; Ramin Atefy; Volney L. Sheen
Background:Malformations of cortical development (MCD) are increasingly recognized as an important cause of epilepsy and developmental delay. MCD encompass a wide spectrum of disorders with various underlying genetic etiologies and clinical manifestations. High resolution imaging has dramatically improved our recognition of MCD. Review Summary:This review will provide a brief overview of the stages of normal cortical development, including neuronal proliferation, neuroblast migration, and neuronal organization. Disruptions at various stages lead to characteristic MCD. Disorders of neurogenesis give rise to microcephaly (small brain) or macrocephaly (large brain). Disorders of early neuroblast migration give rise to periventricular heterotopia (neurons located along the ventricles), whereas abnormalities later in migration lead to lissencephaly (smooth brain) or subcortical band heterotopia (smooth brain with a band of heterotopic neurons under the cortex). Abnormal neuronal migration arrest give rise to over migration of neurons in cobblestone lissencephaly. Lastly, disorders of neuronal organization cause polymicrogyria (abnormally small gyri and sulci). This review will also discuss the known genetic mutations and potential mechanisms that contribute to these syndromes. Conclusion:Identification of various gene mutations has not only given us greater insight into some of the pathophysiologic basis of MCD, but also an understanding of the processes involved in normal cortical development.
Neurology | 2003
Volney L. Sheen; James W. Wheless; Adria Bodell; E. Braverman; Philip D. Cotter; K.A. Rauen; Orit A. Glenn; Kara Weisiger; Seymour Packman; Christopher A. Walsh; Elliott H. Sherr
Periventricular heterotopia (PH) is characterized by neuronal nodules along the lateral ventricles. Whereas mutations in X-linked FLNA cause such cortical malformations, the authors report two cases of PH localizing to chromosome 5p. Both subjects have complex partial seizures. MRI demonstrated bilateral nodular PH, with subcortical heterotopia or focal gliosis. FISH identified a duplication of 5p15.1 [46,XX,dup(5)(p15.1p15.1)] and a trisomy of 5p15.33 [46,XY,der(14)t(5;14)(p15.33;p11.2) mat]. These findings suggest a new PH locus along the telomeric end of chromosome 5p.
Experimental Neurology | 1998
Youzhen Wang; Volney L. Sheen; Jeffrey D. Macklis
Intercellular signals provided by growth and neurotrophic factors play a critical role during neurogenesis and as part of cellular repopulation strategies directed toward reconstruction of complex CNS circuitry. Local signals influence the differentiation of transplanted and endogenous neurons and neural precursors, but the cellular sources and control over expression of these molecules remain unclear. We have previously examined microenvironmental control in neocortex over neuron and neural precursor migration and differentiation following transplantation, using an approach of targeted apoptotic neuronal degeneration to specific neuronal populations in vivo. Prior results suggested the hypothesis that upregulated or reexpressed developmental signal molecules, produced by degenerating pyramidal neurons and/or by neighboring neurons or nonneuronal cells, may be responsible for observed events of directed migration, differentiation, and connectivity by transplanted immature neurons and precursors. To directly investigate this hypothesis, we analyzed the gene expression of candidate and control neurotrophins, growth factors, and receptors within regions of targeted neuronal cell death, first by quantitative Northern blot analysis and then by in situ hybridization combined with immunocytochemical analysis. The genes for BDNF, NT-4/5, trkB receptors, and to a lesser extent NT-3 were upregulated specifically within the regions of neocortex undergoing targeted neuronal degeneration and specifically during the period of ongoing pyramidal neuron apoptosis. Upregulation occurred during the same 3-week period as the previously investigated cellular events of directed migration, differentiation, and integration. No upregulation was seen in panels of control neurotrophins, growth factors, and receptors that are not as developmentally regulated in cortex or that are thought to have primary actions in other CNS regions. In situ hybridization and immunocytochemistry revealed that BDNF mRNA expression was upregulated specifically by local interneurons adjacent to degenerating pyramidal neurons. These findings suggest specific effects of targeted apoptosis on neurotrophin and other gene expression via mechanisms, including intercellular signaling between degenerating pyramidal neurons and surrounding interneurons. Further understanding of these and other controls over neocortical projection neuron differentiation may provide insight regarding normal neocortical development, intercellular signaling induced by apoptosis, and toward reconstruction and cellular repopulation of complex neocortical and other CNS circuitry.
Journal of Anatomy | 2007
Jason Neal; Masaya Takahashi; Matthew D. Silva; Grace Tiao; Christopher A. Walsh; Volney L. Sheen
The developmental mechanisms underlying the formation of human cortical convolutions (gyri and sulci) remain largely unknown. Genetic causes of lissencephaly (literally ‘smooth brain’) would imply that disorders in neuronal migration cause the loss of cortical convolutions. However, prior studies have suggested that loss of sulci and gyri can also arise from impaired proliferation, disrupted lamination and loss of intracortical connections. To gain further insight into the mechanisms underlying the formation of cortical convolutions, we examined the progressive brain development of the gyrencephalic ferret. In this study, we used magnetic resonance imaging to follow the temporal and spatial pattern of neuronal migration, proliferation and differentiation in relation to the onset and development of cortical convolutions. In this manner, we demonstrate that the onset of gyrification begins largely after completion of neuronal proliferation and migration. Gyrification occurs in a lateral to medial gradient, during the period of most rapid cerebral cortical growth. Cortical folding is also largely complete prior to myelination of the underlying cortical axons. These observations are consistent with gyrification arising secondary to cortical processes involving neuronal differentiation.
Experimental Neurology | 1999
Volney L. Sheen; Matthew W. Arnold; Youzhen Wang; Jeffrey D. Macklis
Reconstruction of neocortical circuitry by transplantation of neural precursors, or by manipulation of endogenous precursors, may depend critically upon both local microenvironmental control signals and the intrinsic competence of populations of precursors to appropriately respond to external molecular controls. Dependence on the developmental state of donor or endogenous precursor cells in achieving appropriate differentiation, integration, and connectivity is not clearly understood. Recent studies have demonstrated the ability to generate expandable, often clonal neural precursors at various stages of development. Transplantation of a variety of these precursors suggests that precursor differentiation and integration within the central nervous system (CNS) may depend directly on the level of cellular maturation, with less differentiated, earlier stage precursors offering more flexible but less efficient integration and more differentiated, later stage precursors offering more efficient differentiation to specific phenotypes. To further investigate this hypothesis within neocortex, we used the relatively immature HiB5 multipotent neural precursor cell line derived from embryonic day 16 hippocampus, which is less mature than precursor types that have demonstrated neuronal differentiation in adult neocortex. HiB5 cells labeled fluorescently, radioactively, and genetically were transplanted into murine neocortex under three different conditions expected to offer varying levels of instructive and permissive microenvironmental signals: (1) the developing cortex in utero; (2) regions of adult neocortex undergoing targeted pyramidal neuronal degeneration in which developmental signals are upregulated and in which later stage precursors and immature neurons undergo directed pyramidal neuron differentiation; or (3) the intact adult neocortex. Differentiation and integration of transplanted cells were examined histologically and immunocytochemically by morphology and using neuronal- and glial-specific markers. We found that these precursors underwent differentiation toward cortical neuron phenotypes with characteristic morphologies when transplanted in utero, but failed to do so under either of the adult conditions. HiB5 precursors demonstrated highly immature characteristics in vitro, consistently expressing neuroepithelial but not glial or neuronal markers. Under all conditions, donor cells survived and migrated 1-2 mm from the injection track 2 to 4 weeks after transplantation. HiB5 neural precursors transplanted into the developing cortex of embryonic mice in utero migrated within the cortex, integrated well into the host parenchyma, and differentiated toward morphologically diverse, neuronal phenotypes. HiB5 cells transplanted into the intact cortex of adult mice survived, but did not show neuronal differentiation. In contrast to slightly later stage neural precursors and embryonic neurons used in previous transplantation studies, the HiB5 cells also failed to undergo neuronal differentiation after transplantation into regions undergoing induced apoptotic neuronal degeneration in adult cortex. These results suggested that these early hippocampal-derived precursors might not be fully competent to respond to later stage differentiation and/or survival signals important in neocortex and known to be upregulated in regions undergoing targeted neuronal apoptosis, including the TrkB neurotrophin receptor ligands BDNF and NT-4/5. We investigated this hypothesis and found that undifferentiated HiB5 cells lack catalytic trkB neurotrophin receptors at the mRNA and protein levels, while confirming that they express trkC receptors under the same conditions. Taken together, these findings support a progressive sequence of neural precursor differentiation and a spectrum of competence by precursors to respond to instructive microenvironmental signals. (ABSTRACT TRUNCATED)
Experimental Neurology | 1994
Volney L. Sheen; Jeffrey D. Macklis
Apoptosis influences early development and later refinement in adult tissues. Experiments in which embryonic neurons or multipotent neural precursor cells are transplanted into regions of neuronal degeneration following targeted photolytic cell death show similar regulation of neuronal migration and differentiation. In those experiments, transplanted cells sought to restore normal cytoarchitecture by preferential migration into neuron deficient regions, assumption of pyramidal morphology, and early process elongation. Control transplants into intact and kainic acid lesioned cortex failed to elicit similar responses. We investigated the possibility that mechanisms of neuronal death common to apoptosis and targeted photolysis could explain the similar developmental influences. We assessed the pathways of cellular injury and eventual cell death in neuroblastoma and PC12 cell cultures labeled with nanospheres carrying the chromophore NH4-chlorin e6 and subjected to photoactivation (1) pharmacologically by scavengers of singlet oxygen and inhibitors of lysosomal proteases, (2) histologically by electron, fluorescence, and light microscopy, and (3) biochemically with binding of cellular DNA by propridium iodide, 3-OH DNA end terminal labeling, and gel electrophoresis. We found that nanospheres were incorporated into lysosomes, and exposure to light energy led to singlet oxygen (1O2) production and cell death within both neuroblastoma and PC-12 cell lines. Scavengers of 1O2 prevented cell toxicity, while inactivation of lysosomal proteases reduced cell death. Morphologically, degenerating cells revealed release of proteases from lysosomes and disruption of cytoskeletal proteins. Apoptotic characteristics including early loss of cell adhesion, plasma membrane blebbing, and nuclear condensation and convolution were observed. Biochemically, DNA fragmentation was present in cells stained with propridium iodide and observed by 3-OH end terminal labeling and gel electrophoresis. Thus, cells targeted by photolytically generated 1O2 undergo a form of cell autolysis whose final common pathway is apoptotic. The slow, nonnecrotic process of targeted neuronal cell death in vivo may activate many of the same physiological cues activated by programmed cell death during normal development and during organizational refinement in the adult vertebrate nervous system. This may potentially explain the migration and differentiation of neocortical neurons and neural precursors transplanted into these regions of neuronal degeneration.