Russell K. Hynes
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell K. Hynes.
Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2014
Gary Peng; Rachid Lahlali; Sheau-Fang Hwang; Denis Pageau; Russell K. Hynes; Mary Ruth McDonald; B. D. Gossen; Stephen E. Strelkov
Abstract Select biofungicides and fungicides, used alone or with cultivar resistance or crop rotation, were assessed for their potential in integrated management of clubroot disease. The synthetic fungicides pentachloronitrobenzene, fluazinam and cyazofamid showed activities against Plasmodiophora brassicae. The biofungicides Serenade® and Prestop® also suppressed the disease on canola via antibiosis and induced host resistance under controlled-environment conditions. Granular and seed-treatment formulations were developed to facilitate the delivery of biofungicide in field trials. Where P. brassicae resting spore populations were large in the soil, neither biofungicides nor synthetic fungicides were sufficiently effective when applied in the seed furrow. They occasionally reduced clubroot severity on Chinese cabbage. More than 5000 soil microbial isolates indigenous to the Canadian prairies were screened for potential clubroot control, but none showed consistent efficacy. Resistant cultivars reduced clubroot severity and canola yield losses significantly. A 2-year break from canola reduced P. brassicae resting spore concentrations by 90% relative to growing continuous canola or only a 1-year break in heavily infested field plots. This 2-year break alleviated disease impact on plant growth and development in a susceptible canola cultivar. Despite the substantial inoculum reduction after 2 years, the levels were still too high to obtain commercially acceptable yields in a susceptible cultivar. In a resistant cultivar, >2-year breaks increased yields by up to 25% relative to continuous growing of canola. A 2-year interval with non-hosts between canola crops, together with use of resistant cultivars, is recommended to reduce the inoculum load of P. brassicae in soil and achieve maximum yields of canola.
Biocontrol Science and Technology | 2008
Marilyn Gould; Louise M. Nelson; D. Waterer; Russell K. Hynes
Abstract Serratia grimesii 4–9 and Serratia plymuthica 5–6, isolated from the rhizosphere of pea, Pisum sativum (L), were evaluated for their potential to suppress growth of Fusarium sambucinum in vitro and to reduce Fusarium dry rot in stored potatoes (Solanum tuberosum L). In vitro studies indicated that these bacterial isolates suppressed growth of F. sambucinum by 60% or more at both 15 and 25°C. In a potato tuber slice assay the number of infection sites in potato slices exposed to F. sambucinum and treated with S. grimesii 4–9 and S. plymuthica 5–6 was reduced by 96 and 97%, respectively, at 15°C. The diameter (mm) of the infection sites was reduced 91 and 96%, respectively, when compared to slices treated with F. sambucinum alone. Studies with Fusarium-infected whole potato tubers also showed significant reduction in dry rot formation following treatment with the bacterial isolates or the fungicide thiabendazole. When applied simultaneously with the pathogen, S. grimesii 4–9 and S. plymuthica 5–6 suppressed development of Fusarium dry rot by 60 and 77%, respectively, at 15°C and by 63 and 84%, respectively, at 25°C compared to tubers inoculated with the pathogen alone. Thiabendazole suppressed development of Fusarium dry rot by 66 and 81% at 15 and 25°C, respectively, compared to tubers inoculated with the pathogen alone. These studies demonstrate the potential of soil bacteria as biofungicides for managing post-harvest crop diseases. Due to the potential risks to human health associated with S. grimesii 4–9, S. plymuthica 5–6 is recommended for further study for biofungicide development.
International Journal of Phytoremediation | 2004
Russell K. Hynes; Richard E. Farrell; James J. Germida
ABSTRACT The soil bacterium Sphingomonas yanoikuyae was isolated from a petroleum-contaminated soil and grown on mineral salts agar overlaid with the polycyclic aromatic hydrocarbon phenanthrene. The effect of white mustard, Sinapis alba, on phenanthrene degradation by S. yanoikuyae in artificially contaminated Redi-earth-sand was examined. Solid-phase-microextraction (SPME) gas chromatography-flame ionization detection (GC-FID) was used to quantify the concentration of phenanthrene in the gas phase of Magenta jars containing S. alba and S. yanoikuyae, each alone and with no additions. Gas chromatography–mass spectrometry (GC–MS) of Soxhlet extracts was used to determine the concentration of phenanthrene remaining in Redi-earth-sand. The gas phase concentration of phenanthrene in nonsterile Redi-earth-sand decreased by 99.7% in treatments with S. alba plus S. yanoikuyae, by 98.6% with S. alba, by 96.7% with S. yanoikuyae, and by 95.8% with no additions. Under gnotobiotic conditions, the gas phase concentration of phenanthrene in Redi-earth-sand decreased by 94% in treatments with S. alba plus S. yanoikuyae, by 77% with S. yanoikuyae, by 26% with S. alba, and 0% with no additions. The concentration of phenanthrene in Redi-earth-sand under gnotobiotic conditions decreased in treatments with S. alba plus S. yanoikuyae by 88%, by 67% with S. yanoikuyae, by 13% with S. alba, and 0% with no additions as measured in Soxhlet extracts. These results suggest that SPME–GC can be used to rapidly assess the potential of plants and microorganisms to reduce the level of unaged polyaromatic hydrocarbons such as phenanthrene in soil. This method provided results that were consistent with the more costly Soxhlet extraction method and was less time consuming.
Canadian Journal of Microbiology | 2013
Judicaël Moukoumi; Russell K. Hynes; Tim J. Dumonceaux; Jennifer Town; Nicolas Bélanger
Naturally occurring nitrogen-fixing symbionts from root nodules of caragana (Caragana arborescens) growing in central Saskatchewan were isolated following surface sterilization of caragana root nodules and squashing and spreading of the contents on yeast extract - mannitol medium. The symbiotic nature of the strains was confirmed following inoculation onto surface-sterilized C. arborescens seed in a gnotobiotic Leonard jar system. The Rhizobium isolates from C. arborescens root nodules were intermediate in generation time (g) (mean g of 5 isolates was 6.41 h) compared with the fast growers, Rhizobium leguminosarum NRG457 (g: 4.44 h), Rhizobium tropici 899 (g: 3.19 h), and Sinorhizobium meliloti BALSAC (g: 3.45 h), but they were faster than the slow-growing Bradyrhizobium japonicum USDA 110 (g: 13.86 h) and similar to Mesorhizobium amorphae (g: 7.76 h). Nitrogen derived from fixation by measuring changes in δ(15)N natural abundance in plant tissue confirmed the effectiveness of the strains; approximately 80% N2 from fixation. Strain identification was carried out by determining the sequences of 3 genes: 16S rRNA-encoding genes, cpn60, and recA. This analysis determined that the symbiotic partner of Canadian C. arborescens belongs to the genus Mesorhizobium and seems more related to M. loti than to previously described caragana symbionts like M. caraganae. This is the first report of Mesorhizobium sp. nodulating C. arborescens in western Canada.
Bioresource Technology | 2015
Edmund Mupondwa; Xue Li; Susan M. Boyetchko; Russell K. Hynes; Jon Geissler
The study presents an ex ante technoeconomic analysis of commercial production of Pseudomonas fluorescens BRG100 bioherbicide in Canada. An engineering economic model is designed in SuperPro Designer® to investigate capital investment scaling and profitability. Total capital investment for a stand-alone BRG100 fermentation plant at baseline capacity (two 33,000L fermenters; 3602tonnesannum(-1)) is
Biocontrol Science and Technology | 2016
Tidarat Kaewkham; Russell K. Hynes; Boonmee Siri
17.55million. Total annual operating cost is
Canadian Biosystems Engineering | 2016
Majid Soleimani; Lope G. Tabil; Leigh Campbell; Russell K. Hynes; Tim J. Dumonceaux; Agri-Food Canada, Saskatoon, Sk S N X , Canada
14.76million. Raw materials account for 50% of operating cost. The fermentation plant is profitable over wide operating scale, evaluated over a range of BRG100 prices and costs of capital. Smaller plants require higher NPV breakeven prices. However, larger plants are more sensitive to changes in the cost of capital. Unit production costs decrease as plant capacity increases, indicating scale economies. A plant operating for less than one year approaches positive NPV for periods as low as 2months. These findings can support bioherbicide R&D investment and commercialization strategies.
Archive | 1999
Desirée C. Jans-Hammermeister; Eric Bremer; Russell K. Hynes
ABSTRACT This study examined (1) the effect of the accelerated seed ageing on cucumber germination with treatments: Bacillus subtilis QST713 or Pseudomonas fluorescens CA in 1% methylcellulose and fungicides difenoconazole, carboxin or pyraclostrobin in 5% polyvinyl alcohol, and (2) the impact on disease severity of gummy stem blight (GSB) caused by Didymella bryoniae by the seed treatments and foliar spray application of methylcellulose-formulated B. subtilis or P. fluorescens. Difenoconazole, pyraclostrobin and microorganisms suppressed growth of D. bryoniae in a laboratory dual culture; carboxin had no effect on D. bryoniae growth. Germination of fungicide-treated seed was unaffected by accelerated seed ageing. Greenhouse: GSB disease severity with PVA and non-treated seed was 89% and 84%, respectively, whereas, difenoconazole, carboxin and pyraclostrobin, was significantly reduced, 56%, 53% and 40%, respectively. Germination of Bacillus-treated seed was unaffected by accelerated seed ageing, but was significantly reduced with Pseudomonas-treated seed. GSB disease severity with B. subtilis or P. fluorescens-treated seed was inconsistent; however, foliar spray application of B. subtilis significantly reduced GSB. Accelerated seed ageing exposed a significant negative impact on seed germination with P. fluorescens. Based on the accelerated ageing test, P. fluorescens-treated cucumber seed is detrimental to seed survival and therefore, is not a candidate for biocontrol activities for cucumber requiring seed storage.
Canadian Journal of Microbiology | 2001
Inés E. García de Salamone; Russell K. Hynes; Louise M. Nelson
CANADIAN BIOSYSTEMS ENGINEERING 3.1 Densification of a fermented lignocellulosic biomass rich in cellulolytic enzymes Majid Soleimani, Lope G. Tabil, Leigh Campbell, Russell K. Hynes and Tim Dumonceaux Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada GNC Bioferm Inc., Bradwell, SK S0K 0P0, Canada Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada Email: [email protected] http://dx.doi.org/10.7451/CBE.2016.58.3.1 Received: 2015 September 14, Accepted: 2016 March 29, Published: 2016 June 6.
Canadian Journal of Microbiology | 1984
Russell K. Hynes; Roger Knowles
A number of legume inoculant formulations are available to pea growers in western Canada. To investigate the interaction between inoculant formulation and rhizobial dynamics in the pea rhizosphere, a streptomycin resistant mutant of Rhizobium leguminosarum 128C56G was formulated into peat, liquid and granular carriers and applied to peas grown at field sites near Saskatoon, Saskatchewan, Canada in 1996 and 1997. Population dynamics of R. leguminosarum 128C56G strR associated with seeds and seedlings were similar for all formulations: an increase in population within 2-5 days was followed by stabilization around Log 5/seedling after day 15. In 1997, the peat formulation had significantly higher overall rhizospherepopulations. Formulation did not significantly affect nodule number nor the percentage of nodules occupied by 128C56G strR at 60 days after planting. Formulation also did not have a significant effect on pea yields at the Saskatoon site nor at three other field sites around Saskatchewan.