Russell P. Goodman
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell P. Goodman.
PLOS ONE | 2012
Raina N. Fichorova; Yujin Lee; Hidemi S. Yamamoto; Yuko Takagi; Gary R. Hayes; Russell P. Goodman; Xenia Chepa-Lotrea; Olivia R. Buck; Ryan Murray; Tomasz Kula; David H. Beach; Bibhuti N. Singh; Max L. Nibert
Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth), HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole) commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae.
Nano Letters | 2009
Takayuki Kato; Russell P. Goodman; Christoph Erben; Andrew J. Turberfield; Keiichi Namba
Many DNA nanostructures have been produced and a wide range of potential applications have been proposed. However, confirmation of accurate 3D construction is particularly challenging. Here, we demonstrate that cryoEM may be exploited to obtain structural information at sufficient resolution to visualize the DNA helix and reveal the absolute stereochemistry of a 7 nm self-assembled DNA tetrahedron. Structural analysis at such high resolution by cryoEM image analysis is unprecedented for any biological molecule of this size.
Archives of Virology | 2011
Russell P. Goodman; Said A. Ghabrial; Raina N. Fichorova; Max L. Nibert
The family Totiviridae includes a number of viruses with monosegmented dsRNA genomes and isometric virions that infect either fungi or a number of medically important protozoan parasites such as Leishmania and Giardia. A new genus, Trichomonasvirus, was recently approved for this family. Its name is based on the genus of its host organism, Trichomonas vaginalis, a protozoan parasite that colonizes the human genitourinary mucosa and is the most common non-viral sexually transmitted infection in the world. The type species of this new genus is Trichomonas vaginalis virus 1. Distinguishing characteristics of the new genus include infection of a human sexually transmitted parasite, stable mixed infection with more than one distinct Trichomonasvirus species, and sequence-based phylogenetic divergence that distinguishes it from all other family members.
Science | 2016
Denis V. Titov; Valentin Cracan; Russell P. Goodman; Jun Peng; Zenon Grabarek; Vamsi K. Mootha
Taking control of cellular NAD+ concentrations Cellular concentrations of the nicotinamide adenine dinucleotide (NAD+) are critical for proper metabolism and are often altered in aging and disease. To enable better understanding of these processes, Titov et al. altered the concentration of NAD+ in particular cellular compartments. They did this through expression of a bacterial enzyme targeted to specific compartments of human cells in culture. Their experiments emphasize the important role of the electron transport chain in redox transfer of electrons to NADH, rather than proton pumping, in mitochondrial pathogenesis. Science, this issue p. 231 The process of borrowing a bacterial enzyme to control nicotinamide adenine dinucleotide concentrations in mammalian cells is discussed. A decline in electron transport chain (ETC) activity is associated with many human diseases. Although diminished mitochondrial adenosine triphosphate production is recognized as a source of pathology, the contribution of the associated reduction in the ratio of the amount of oxidized nicotinamide adenine dinucleotide (NAD+) to that of its reduced form (NADH) is less clear. We used a water-forming NADH oxidase from Lactobacillus brevis (LbNOX) as a genetic tool for inducing a compartment-specific increase of the NAD+/NADH ratio in human cells. We used LbNOX to demonstrate the dependence of key metabolic fluxes, gluconeogenesis, and signaling on the cytosolic or mitochondrial NAD+/NADH ratios. Expression of LbNOX in the cytosol or mitochondria ameliorated proliferative and metabolic defects caused by an impaired ETC. The results underscore the role of reductive stress in mitochondrial pathogenesis and demonstrate the utility of targeted LbNOX for direct, compartment-specific manipulation of redox state.
ChemBioChem | 2009
Russell P. Goodman; Christoph Erben; Jonathan Malo; Wei M. Ho; Mireya L. McKee; Achillefs N. Kapanidis; Andrew J. Turberfield
A simple modification allows DNA to be linked to recombinant proteins. DNA functionalized with three nitrilotriacetic acid groups forms coordination complexes with nickel ions and the His6‐tag of the recombinant protein (here, GFP). This noncovalent linkage is reversible, site‐specific and has a high (nanomolar) affinity.
Journal of Virology | 2011
Russell P. Goodman; Taylor S. Freret; Tomasz Kula; Alexander M. Geller; Megan W. T. Talkington; Olimpia Suciu; Aleksander A. Demidenko; Said A. Ghabrial; David H. Beach; Bibhuti N. Singh; Raina N. Fichorova; Max L. Nibert
ABSTRACT Trichomonas vaginalis, which causes the most common nonviral sexually transmitted disease worldwide, is itself commonly infected by nonsegmented double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae. To date, cDNA sequences of one or more strains of each of three trichomonasvirus species have been reported, and gel electrophoresis showing several different dsRNA molecules obtained from a few T. vaginalis isolates has suggested that more than one virus strain might concurrently infect the same parasite cell. Here, we report the complete cDNA sequences of 3 trichomonasvirus strains, one from each of the 3 known species, infecting a single, agar-cloned clinical isolate of T. vaginalis, confirming the natural capacity for concurrent (in this case, triple) infections in this system. We furthermore report the complete cDNA sequences of 11 additional trichomonasvirus strains, from 4 other clinical isolates of T. vaginalis. These additional strains represent the three known trichomonasvirus species, as well as a newly identified fourth species. Moreover, 2 of these other T. vaginalis isolates are concurrently infected by strains of all 4 trichomonasvirus species (i.e., quadruple infections). In sum, the full-length cDNA sequences of these 14 new trichomonasviruses greatly expand the existing data set for members of this genus and substantiate our understanding of their genome organizations, protein-coding and replication signals, diversity, and phylogenetics. The complexity of this virus-host system is greater than has been previously well recognized and suggests a number of important questions relating to the pathogenesis and disease outcomes of T. vaginalis infections of the human genital mucosa.
Journal of Virology | 2011
Xiaodong Yan; Kristin N. Parent; Russell P. Goodman; Jinghua Tang; Jingyun Shou; Max L. Nibert; Roy Duncan; Timothy S. Baker
ABSTRACT Baboon reovirus (BRV) is a member of the fusogenic subgroup of orthoreoviruses. Unlike most other members of its genus, BRV lacks S-segment coding sequences for the outer fiber protein that binds to cell surface receptors. It shares this lack with aquareoviruses, which constitute a related genus and are also fusogenic. We used electron cryomicroscopy and three-dimensional image reconstruction to determine the BRV virion structure at 9.0-Å resolution. The results show that BRV lacks a protruding fiber at its icosahedral 5-fold axes or elsewhere. The results also show that BRV is like nonfusogenic mammalian and fusogenic avian orthoreoviruses in having 150 copies of the core clamp protein, not 120 as in aquareoviruses. On the other hand, there are no hub-and-spoke complexes attributable to the outer shell protein in the P2 and P3 solvent channels of BRV, which makes BRV like fusogenic avian orthoreoviruses and aquareoviruses but unlike nonfusogenic mammalian orthoreoviruses. The outermost “flap” domains of the BRV core turret protein appear capable of conformational variability within the virion, a trait previously unseen among other ortho- and aquareoviruses. New cDNA sequence determinations for the BRV L1 and M2 genome segments, encoding the core turret and outer shell proteins, were helpful for interpreting the structural features of those proteins. Based on these findings, we conclude that the evolution of ortho- and aquareoviruses has included a series of discrete gains or losses of particular components, several of which cross taxonomic boundaries. Gain or loss of adhesion fibers is one of several common themes in double-stranded RNA virus evolution.
Journal of Biological Chemistry | 2018
Russell P. Goodman; Sarah E. Calvo; Vamsi K. Mootha
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.
Hepatology Communications | 2018
Jay Luther; Manish Gala; Nynke Z. Borren; Ricard Masia; Russell P. Goodman; Ida Hatoum Moeller; Erik DiGiacomo; Alyssa Ehrlich; Andrew D. Warren; Martin L. Yarmush; Ashwin N. Ananthakrishnan; Kathleen E. Corey; Lee M. Kaplan; Sangeeta N. Bhatia; Raymond T. Chung; Suraj J. Patel
Emerging data highlight the critical role for the innate immune system in the progression of nonalcoholic fatty liver disease (NAFLD). Connexin 32 (Cx32), the primary liver gap junction protein, is capable of modulating hepatic innate immune responses and has been studied in dietary animal models of steatohepatitis. In this work, we sought to determine the association of hepatic Cx32 with the stages of human NAFLD in a histologically characterized cohort of 362 patients with NAFLD. We also studied the hepatic expression of the genes and proteins known to interact with Cx32 (known as the connexome) in patients with NAFLD. Last, we used three independent dietary mouse models of nonalcoholic steatohepatitis to investigate the role of Cx32 in the development of steatohepatitis and fibrosis. In a univariate analysis, we found that Cx32 hepatic expression associates with each component of the NAFLD activity score and fibrosis severity. Multivariate analysis revealed that Cx32 expression most closely associated with the NAFLD activity score and fibrosis compared to known risk factors for the disease. Furthermore, by analyzing the connexome, we identified novel genes related to Cx32 that associate with NAFLD progression. Finally, we demonstrated that Cx32 deficiency protects against liver injury, inflammation, and fibrosis in three murine models of nonalcoholic steatohepatitis by limiting initial diet‐induced hepatoxicity and subsequent increases in intestinal permeability. Conclusion: Hepatic expression of Cx32 strongly associates with steatohepatitis and fibrosis in patients with NAFLD. We also identify novel genes associated with NAFLD and suggest that Cx32 plays a role in promoting NAFLD development. (Hepatology Communications 2018;2:786‐797)
Clinical and translational gastroenterology | 2016
Russell P. Goodman; Daniel C. Chung
Rapid advances in genetics have led to an increased understanding of the genetic determinants of human disease, including many gastrointestinal (GI) disorders. Coupled with a proliferation of genetic testing services, this has resulted in a clinical landscape where commercially available genetic tests for GI disorders are now widely available. In this review, we discuss the current status of clinical genetic testing for GI illnesses, review the available testing options, and briefly discuss indications for and practical aspects of such testing. Our goal is to familiarize the practicing gastroenterologist with this rapidly changing and important aspect of clinical care.