Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rute S.T. Martins is active.

Publication


Featured researches published by Rute S.T. Martins.


Nature Communications | 2014

European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation

Mbaye Tine; Heiner Kuhl; Pierre-Alexandre Gagnaire; Bruno Louro; Erick Desmarais; Rute S.T. Martins; Jochen Hecht; Florian Knaust; Khalid Belkhir; Sven Klages; Roland Dieterich; Kurt Stueber; Francesc Piferrer; Bruno Guinand; Nicolas Bierne; Filip Volckaert; Luca Bargelloni; Deborah M. Power; François Bonhomme; Adelino V. M. Canario; Richard Reinhardt

The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.


Aging Cell | 2016

Long live FOXO: unraveling the role of FOXO proteins in aging and longevity

Rute S.T. Martins; Gordon J. Lithgow; Wolfgang Link

Aging constitutes the key risk factor for age‐related diseases such as cancer and cardiovascular and neurodegenerative disorders. Human longevity and healthy aging are complex phenotypes influenced by both environmental and genetic factors. The fact that genetic contribution to lifespan strongly increases with greater age provides basis for research on which “protective genes” are carried by long‐lived individuals. Studies have consistently revealed FOXO (Forkhead box O) transcription factors as important determinants in aging and longevity. FOXO proteins represent a subfamily of transcription factors conserved from Caenorhabditis elegans to mammals that act as key regulators of longevity downstream of insulin and insulin‐like growth factor signaling. Invertebrate genomes have one FOXO gene, while mammals have four FOXO genes: FOXO1, FOXO3, FOXO4, and FOXO6. In mammals, this subfamily is involved in a wide range of crucial cellular processes regulating stress resistance, metabolism, cell cycle arrest, and apoptosis. Their role in longevity determination is complex and remains to be fully elucidated. Throughout this review, the mechanisms by which FOXO factors contribute to longevity will be discussed in diverse animal models, from Hydra to mammals. Moreover, compelling evidence of FOXOs as contributors for extreme longevity and health span in humans will be addressed.


Journal of Phycology | 2001

Effects of temperature on the photoreactivation of ultraviolet-B-induced DNA damage in Palmaria palmata (Rhodophyta)

Hans Pakker; Rute S.T. Martins; Peter Boelen; Anita Buma; Osamu Nikaido; Anneke M. Breeman

The accumulation of DNA damage (thymine dimers and 6‐4 photoproducts) induced by ultraviolet‐B radiation was studied in Palmaria palmata (L.) O. Kuntze under different light and temperature conditions, using specific monoclonal antibodies and subsequent chemiluminescent detection. Both types of damage were repaired much faster under ultraviolet‐A radiation (UVAR) plus photosynthetically active radiation (PAR) than in darkness, which indicates photoreactivating activity. At 12° C, all thymine dimers were repaired after 2 h irradiation with UVAR plus PAR, whereas 6‐4 photoproducts were almost completely repaired after 4 h. After 19 h of darkness, almost complete repair of 6‐4 photoproducts was found, and 67% of the thymine dimers were repaired. In a second set of experiments, repair of DNA damage under UVAR plus PAR was compared at three different temperatures (0, 12, and 25° C). Again, thymine dimers were repaired faster than 6‐4 photoproducts at all three temperatures. At 0° C, significant repair of thymine dimers was found but not of 6‐4 photoproducts. Significant repair of both thymine dimers and 6‐4 photoproducts occurred at 12 and 25° C. Optimal repair efficiency was found at 25° C for thymine dimers but at 12° C for 6‐4 photoproducts, which suggests that the two photorepair processes have different temperature characteristics.


Reproductive Biology and Endocrinology | 2007

Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation

Rute S.T. Martins; Laurence Deloffre; Constantinos C. Mylonas; Deborah M. Power; Adelino V. M. Canario

BackgroundDAX1 (NR0B1), a member of the nuclear receptors super family, has been shown to be involved in the genetic sex determination and in gonadal differentiation in several vertebrate species. In the aquaculture fish European sea bass, Dicentrarchus labrax, and in the generality of fish species, the mechanisms of sex determination and differentiation have not been elucidated. The present study aimed at characterizing the European DAX1 gene and its developmental expression at the mRNA level.MethodsA full length European sea bass DAX1 cDNA (sbDAX1) was isolated by screening a testis cDNA library. The structure of the DAX1 gene was determined by PCR and Southern blot. Multisequence alignments and phylogenetic analysis were used to compare the translated sbDAX1 product to that of other vertebrates. sbDAX1 expression was analysed by Northern blot and relative RT-PCR in adult tissues. Developmental expression of mRNA levels was analysed in groups of larvae grown either at 15°C or 20°C (masculinising temperature) during the first 60 days, or two groups of fish selected for fast (mostly females) and slow growth.ResultsThe sbDAX1 is expressed as a single transcript in testis and ovary encoding a predicted protein of 301 amino acids. A polyglutamine stretch of variable length in different DAX1 proteins is present in the DNA binding domain. The sbDAX1 gene is composed of two exons, separated by a single 283 bp intron with conserved splice sites in same region of the ligand binding domain as other DAX1 genes. sbDAX1 mRNA is not restricted to the brain-pituitary-gonadal axis and is also detected in the gut, heart, gills, muscle and kidney. sbDAX1 mRNA was detected as early as 4 days post hatching (dph) and expression was not affected by incubation temperature. Throughout gonadal sex differentiation (60–300 dph) no dimorphic pattern of expression was observed.ConclusionThe sbDAX1 gene and putative protein coding region is highly conserved and has a wide pattern of tissue expression. Although gene expression data suggests sbDAX1 to be important for the development and differentiation of the gonads, it is apparently not sex specific.


General and Comparative Endocrinology | 2014

Novel galanin receptors in teleost fish: identification, expression and regulation by sex steroids.

Rute S.T. Martins; Patrícia Pinto; Pedro Guerreiro; Silvia Zanuy; Manuel Carrillo; Adelino V. M. Canario

In fish, the onset of puberty, the transition from juvenile to sexually reproductive adult animals, is triggered by the activation of pituitary gonadotropin secretion and its timing is influenced by external and internal factors that include the growth/adiposity status of the animal. Kisspeptins have been implicated in the activation of puberty but peripheral signals coming from the immature gonad or associated to the metabolic/nutritional status are also thought to be involved. Therefore we hypothesize the importance of the galinergic system in the brain and testis of pre-pubertal male sea bass as a candidate to translate the signals leading to activation of testicular maturation. Here, the transcripts for four galanin receptors (GALR), named GALR1a, 1b, 2a and 2b, were isolated from European sea bass, Dicentrarchus labrax. Phylogenetic analysis confirmed the previously reported duplication of GALR1 in teleost fish, and unravelled the duplication of GALR2 in teleost fish and in some tetrapod species. Comparison with human showed that the key amino acids involved in ligand binding are present in the corresponding GALR1 and GALR2 orthologs. Transcripts for all four receptors are expressed in brain and testes of adult fish with GALR1a and GALR1b abundant in testes and hardly detected in ovaries. In order to investigate whether GALR1 dimorphic expression was dependent on steroid context we evaluated the effect of 11-ketotestosterone and 17β-estradiol treatments on the receptor expression in brain and testes of pre-pubertal males. Interestingly, steroid treatments had no effect on the expression of GALRs in the brain while in the testes, GALR1a and GALR1b were significantly up regulated by 11KT. Altogether, these results support a role for the galaninergic system, in particular the GALR1 paralog, in fish reproductive function.


PLOS ONE | 2015

Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes.

Rute C. Félix; Marlene Trindade; Isa R. P. Pires; Vera G. Fonseca; Rute S.T. Martins; Henrique Silveira; Deborah M. Power; João C.R. Cardoso

Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.


PLOS ONE | 2015

Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain.

Rute S.T. Martins; Ana M. Gómez; Silvia Zanuy; Manuel Carrillo; Adelino V. M. Canario

The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.


General and Comparative Endocrinology | 2014

Calcitonin receptor family evolution and fishing for function using in silico promoter analysis

Rute S.T. Martins; Flobela A. Vieira; Deborah M. Power

In the present study the calcitonin receptor (CTR) sub-family of family B G-protein coupled receptors (GPCRs) in teleosts is evaluated and put in the context of the families overall evolution from echinodermates to vertebrates. Echinodermates, hemichordates, cephalochordates and tunicates have a single gene that encodes a receptor that bears similarity to the vertebrate calcitonin receptor (CTR) and calcitonin-like receptor (CTR/CLR). In tetrapods one gene encodes the calcitonin receptor (CALCR) and another gene the calcitonin receptor-like receptor (CALCRL). The evolution of CALCR has been under strong conservative pressure and a single copy is also found in fishes and high conservation of gene organisation and synteny exits from teleosts to human. A teleost specific CTR innovation that occurred after their divergence from holostei is the presence of several HBDs in the N-terminus. CALCRL had a different evolutionary trajectory from CALCR and although a single gene copy is present in tetrapods the sarcopterygii fish, the coelacanth, has 1 copy of CALCRL but also a fish specific form CALCRL3. The ray-finned fish, the spotted gar, has 1 copy of CALCRL and 1 of CALCRL3 but the teleost specific whole genome duplication has resulted in a CALCRL1 and CALCRL2 in addition to the fish specific CALCRL3. Strong conservation of CALCRL gene structure exists from human to fish. Promoter analysis in silico reveals that the duplicated CALCRL genes in the teleosts, zebrafish, takifugu, tetraodon and medaka, have divergent promoters and different putative co-regulated gene partners suggesting their function is different.


BMC Genomics | 2014

Changes in the gene expression profiles of the brains of male European eels (Anguilla anguilla) during sexual maturation

Allison M. Churcher; José Martin Pujolar; Massimo Milan; Peter C. Hubbard; Rute S.T. Martins; João Saraiva; Mar Huertas; Luca Bargelloni; Tomaso Patarnello; Ilaria A. M. Marino; Lorenzo Zane; Adelino V. M. Canario

BackgroundThe vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males.ResultsUsing a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity.ConclusionsThis study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.


Gene | 2013

DAX1 regulatory networks unveil conserved and potentially new functions.

Rute S.T. Martins; Deborah M. Power; Juan Fuentes; Laurence Deloffre; Adelino V. M. Canario

DAX1 is an orphan nuclear receptor with actions in mammalian sex determination, regulation of steroidogenesis, embryonic development and neural differentiation. Conserved patterns of DAX1 gene expression from mammals to fish have been taken to suggest conserved function. In the present study, the European sea bass, Dicentrarchus labrax, DAX1 promoter was isolated and its conserved features compared to other fish and mammalian DAX1 promoters in order to derive common regulators and functional gene networks. Fish and mammalian DAX1 promoters share common sets of transcription factor frameworks which were also present in the promoter region of another 127 genes. Pathway analysis clustered these into candidate gene networks associated with the fish and mammalian DAX1. The networks identified are concordant with described functions for DAX1 in embryogenesis, regulation of transcription, endocrine development and steroid production. Novel candidate gene network partners were also identified, which implicate DAX1 in ion homeostasis and transport, lipid transport and skeletal development. Experimental evidence is provided supporting roles for DAX1 in steroid signalling and osmoregulation in fish. These results highlight the usefulness of the in silico comparative approach to analyse gene regulation for hypothesis generation. Conserved promoter architecture can be used also to predict potentially new gene functions. The approach reported can be applied to genes from model and non-model species.

Collaboration


Dive into the Rute S.T. Martins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Zanuy

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Louro

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Fuentes

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Patrícia Pinto

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Constantinos C. Mylonas

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Manuel Carrillo

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge