Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Birbe is active.

Publication


Featured researches published by Ruth Birbe.


Cell Cycle | 2011

Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.

Diana Whitaker-Menezes; Ubaldo E. Martinez-Outschoorn; Zhao Lin; Adam Ertel; Neal Flomenberg; Agnieszka K. Witkiewicz; Ruth Birbe; Anthony Howell; Stephanos Pavlides; Ricardo Gandara; Richard G. Pestell; Federica Sotgia; Nancy J. Philp; Michael P. Lisanti

Recently, we proposed a new mechanism for understanding the Warburg effect in cancer metabolism. In this new paradigm, cancer-associated fibroblasts undergo aerobic glycolysis, and extrude lactate to “feed” adjacent cancer cells, which then drives mitochondrial biogenesis and oxidative mitochondrial metabolism in cancer cells. Thus, there is vectorial transport of energy-rich substrates from the fibroblastic tumor stroma to anabolic cancer cells. A prediction of this hypothesis is that cancer-associated fibroblasts should express MCT4, a mono-carboxylate transporter that has been implicated in lactate efflux from glycolytic muscle fibers and astrocytes in the brain. To address this issue, we co-cultured MCF7 breast cancer cells with normal fibroblasts. Interestingly, our results directly show that breast cancer cells specifically induce the expression of MCT4 in cancer-associated fibroblasts; MCF7 cells alone and fibroblasts alone, both failed to express MCT4. We also show that the expression of MCT4 in cancer-associated fibroblasts is due to oxidative stress, and can be prevented by pre-treatment with the anti-oxidant N-acetyl-cysteine. In contrast to our results with MCT4, we see that MCT1, a transporter involved in lactate uptake, is specifically upregulated in MCF7 breast cancer cells when co-cultured with fibroblasts. Virtually identical results were also obtained with primary human breast cancer samples. In human breast cancers, MCT4 selectively labels the tumor stroma, e.g., the cancer-associated fibroblast compartment. Conversely, MCT1 was selectively expressed in the epithelial cancer cells within the same tumors. Functionally, we show that overexpression of MCT4 in fibroblasts protects both MCF7 cancer cells and fibroblasts against cell death, under co-culture conditions. Thus, we provide the first evidence for the existence of a stromal-epithelial lactate shuttle in human tumors, analogous to the lactate shuttles that are essential for the normal physiological function of muscle tissue and brain. These data are consistent with the “reverse Warburg effect,” which states that cancer-associated fibroblasts undergo aerobic glycolysis, thereby producing lactate, which is utilized as a metabolic substrate by adjacent cancer cells. In this model, “energy transfer” or “metabolic-coupling” between the tumor stroma and epithelial cancer cells “fuels” tumor growth and metastasis, via oxidative mitochondrial metabolism in anabolic cancer cells. Most importantly, our current findings provide a new rationale and novel strategy for anti-cancer therapies, by employing MCT inhibitors.


Cell Cycle | 2011

Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: Visualizing the therapeutic effects of metformin in tumor tissue

Diana Whitaker-Menezes; Ubaldo E. Martinez-Outschoorn; Neal Flomenberg; Ruth Birbe; Agnieszka K. Witkiewicz; Anthony Howell; Stephanos Pavlides; Aristotelis Tsirigos; Adam Ertel; Richard G. Pestell; Paolo Broda; Carlo Minetti; Michael P. Lisanti; Federica Sotgia

We have recently proposed a new mechanism for explaining energy transfer in cancer metabolism. In this scenario, cancer cells behave as metabolic parasites, by extracting nutrients from normal host cells, such as fibroblasts, via the secretion of hydrogen peroxide as the initial trigger. Oxidative stress in the tumor microenvironment then leads to autophagy-driven catabolism, mitochondrial dys-function, and aerobic glycolysis. This, in turn, produces high-energy nutrients (such as L-lactate, ketones, and glutamine) that drive the anabolic growth of tumor cells, via oxidative mitochondrial metabolism. A logical prediction of this new “parasitic” cancer model is that tumor-associated fibroblasts should show evidence of mitochondrial dys-function (mitophagy and aerobic glycolysis). In contrast, epithelial cancer cells should increase their oxidative mitochondrial capacity. To further test this hypothesis, here we subjected frozen sections from human breast tumors to a staining procedure that only detects functional mitochondria. This method detects the in situ enzymatic activity of cytochrome C oxidase (COX), also known as Complex IV. Remarkably, cancer cells show an over-abundance of COX activity, while adjacent stromal cells remain essentially negative. Adjacent normal ductal epithelial cells also show little or no COX activity, relative to epithelial cancer cells. Thus, oxidative mitochondrial activity is selectively amplified in cancer cells. Although COX activity staining has never been applied to cancer tissues, it could now be used routinely to distinguish cancer cells from normal cells, and to establish negative margins during cancer surgery. Similar results were obtained with NADH activity staining, which measures Complex I activity, and succinate dehydrogenase (SDH) activity staining, which measures Complex II activity. COX and NADH activities were blocked by electron transport inhibitors, such as Metformin. This has mechanistic and clinical implications for using Metformin as an anti-cancer drug, both for cancer therapy and chemo-prevention. We also immuno-stained human breast cancers for a series of well-established protein biomarkers of metabolism. More specifically, we now show that cancer-associated fibroblasts over-express markers of autophagy (cathepsin B), mitophagy (BNIP3L), and aerobic glycolysis (MCT4). Conversely, epithelial cancer cells show the over-expression of a mitochondrial membrane marker (TOMM20), as well as key components of Complex IV (MT-CO1) and Complex II (SDH-B). We also validated our observations using a bioinformatics approach with data from >2,000 breast cancer patients, which showed the transcriptional upregulation of mitochondrial oxidative phosphorylation (OXPHOS) in human breast tumors (p < 10-20), and a specific association with metastasis. Therefore, upregulation of OXPHOS in epithelial tumor cells is a common feature of human breast cancers. In summary, our data provide the first functional in vivo evidence that epithelial cancer cells perform enhanced mitochondrial oxidative phosphorylation, allowing them to produce high amounts of ATP. Thus, we believe that mitochondria are both the “powerhouse” and “Achilles’ heel” of cancer cells.


Cell Cycle | 2012

Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production.

Claudia Capparelli; Carmela Guido; Diana Whitaker-Menezes; Gloria Bonuccelli; Renee M. Balliet; Timothy G. Pestell; Allison Goldberg; Richard G. Pestell; Anthony Howell; Sharon Sneddon; Ruth Birbe; Aristotelis Tsirigos; Ubaldo E. Martinez-Outschoorn; Federica Sotgia; Michael P. Lisanti

Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased β-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of “two-compartment tumor metabolism” in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, β-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism.


Clinical Cancer Research | 2005

Analysis of KIT Mutations in Sporadic and Familial Gastrointestinal Stromal Tumors: Therapeutic Implications through Protein Modeling

Chi Tarn; Erin Merkel; Adrian A. Canutescu; Wei Shen; Yuliya Skorobogatko; Martin J. Heslin; Burton L. Eisenberg; Ruth Birbe; Arthur Patchefsky; Roland L. Dunbrack; J. Pablo Arnoletti; Margaret von Mehren; Andrew K. Godwin

Purpose: Gastrointestinal stromal tumors (GIST) are characterized by expressing a gain-of-function mutation in KIT, and to a lesser extent, PDGFR. Imatinib mesylate, a tyrosine kinase inhibitor, has activity against GISTs that contain oncogenic mutations of KIT. In this study, KIT and PDGFRα mutation status was analyzed and protein modeling approaches were used to assess the potential effect of KIT mutations in response to imatinib therapy. Experimental Design: Genomic DNA was isolated from GIST tumors. Exons 9, 11, 13, and 17 of c-KIT and exons 12, 14, and 18 of PDGFRα were evaluated for oncogenic mutations. Protein modeling was used to assess mutations within the juxtamembrane region and the kinase domain of KIT. Results: Mutations in KIT exons 9, 11, and 13 were identified in GISTs with the majority of changes involving the juxtamembrane region of KIT. Molecular modeling indicates that mutations in this region result in disruption of the KIT autoinhibited conformation, and lead to gain-of-function activation of the kinase. Furthermore, a novel germ-line mutation in KIT was identified that is associated with an autosomal dominant predisposition to the development of GIST. Conclusions: We have used protein modeling and structural analyses to elucidate why patients with GIST tumors containing exon 11 mutations are the most responsive to imatinib mesylate treatment. Importantly, mutations detected in this exon and others displayed constitutive activation of KIT. Furthermore, we have found tumors that are both KIT and PDGFRα mutation negative, suggesting that additional, yet unidentified, abnormalities may contribute to GIST tumorigenesis.


Cell Cycle | 2012

Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.

Federica Sotgia; Diana Whitaker-Menezes; Ubaldo E. Martinez-Outschoorn; Neal Flomenberg; Ruth Birbe; Agnieszka K. Witkiewicz; Anthony Howell; Nancy J. Philp; Richard G. Pestell; Michael P. Lisanti

We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the “reverse Warburg effect,” because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TO MM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the “reverse Warburg effect,” our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TO MM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally “fuels” tumor progression and metastatic dissemination, by “feeding” mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TO MM20(-) “glycolytic” cancer cells were rarely observed, indicating that the conventional “Warburg effect” does not frequently occur in cancer-positive lymph node metastases.


International Journal of Radiation Oncology Biology Physics | 2014

Genomic Prostate Cancer Classifier Predicts Biochemical Failure and Metastases in Patients After Postoperative Radiation Therapy

Robert B. Den; Felix Y. Feng; Timothy N. Showalter; Mark V. Mishra; Edouard J. Trabulsi; Leonard G. Gomella; W. Kevin Kelly; Ruth Birbe; Peter McCue; Mercedeh Ghadessi; Kasra Yousefi; Elai Davicioni; Karen E. Knudsen; Adam P. Dicker

Purpose To test the hypothesis that a genomic classifier (GC) would predict biochemical failure (BF) and distant metastasis (DM) in men receiving radiation therapy (RT) after radical prostatectomy (RP). Methods and Materials Among patients who underwent post-RP RT, 139 were identified for pT3 or positive margin, who did not receive neoadjuvant hormones and had paraffin-embedded specimens. Ribonucleic acid was extracted from the highest Gleason grade focus and applied to a high-density-oligonucleotide microarray. Receiver operating characteristic, calibration, cumulative incidence, and Cox regression analyses were performed to assess GC performance for predicting BF and DM after post-RP RT in comparison with clinical nomograms. Results The area under the receiver operating characteristic curve of the Stephenson model was 0.70 for both BF and DM, with addition of GC significantly improving area under the receiver operating characteristic curve to 0.78 and 0.80, respectively. Stratified by GC risk groups, 8-year cumulative incidence was 21%, 48%, and 81% for BF (P<.0001) and for DM was 0, 12%, and 17% (P=.032) for low, intermediate, and high GC, respectively. In multivariable analysis, patients with high GC had a hazard ratio of 8.1 and 14.3 for BF and DM. In patients with intermediate or high GC, those irradiated with undetectable prostate-specific antigen (PSA ≤0.2 ng/mL) had median BF survival of >8 years, compared with <4 years for patients with detectable PSA (>0.2 ng/mL) before initiation of RT. At 8 years, the DM cumulative incidence for patients with high GC and RTwith undetectable PSA was 3%, compared with 23% with detectable PSA (P=.03). No outcome differences were observed for low GC between the treatment groups. Conclusion The GC predicted BF and metastasis after post-RP irradiation. Patients with lower GC risk may benefit from delayed RT, as opposed to those with higher GC; however, this needs prospective validation. Genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.


Clinical Cancer Research | 2006

A Validated Quantitative Assay to Detect Occult Micrometastases by Reverse Transcriptase-Polymerase Chain Reaction of Guanylyl Cyclase C in Patients with Colorectal Cancer

Stephanie Schulz; Terry Hyslop; Janis Haaf; Christine Bonaccorso; Karl Nielsen; Matthew E. Witek; Ruth Birbe; Juan P. Palazzo; David S. Weinberg; Scott A. Waldman

Purpose: Guanylyl cyclase C (GCC), a receptor for bacterial diarrheagenic enterotoxins, may be a prognostic and predictive marker to detect occult micrometastases in patients undergoing staging for colorectal cancer. However, quantification of GCC expression in tissues by the quantitative reverse transcription-PCR (qRT-PCR) has not undergone analytic and clinicopathologic validation. Experimental Design: A technique to quantify GCC mRNA in tissues employing RT-PCR was developed and validated employing external calibration standards of RNA complementary to GCC. Results: GCC qRT-PCR exhibited reaction efficiencies >92%, coefficients of variations <5%, linearity >6 orders of magnitude, and a limit of quantification of >25 copies of GCC cRNA. This assay confirmed that GCC mRNA was overexpressed by colorectal tumors from 41 patients, which correlated with increased GCC protein quantified by immunohistochemistry. Analyses obtained with 164 lymph nodes from patients free of cancer and 15 nodes harboring metastases established a threshold for metastatic disease of ∼200 GCC mRNA copies/μg total RNA, with a sensitivity of 93% and specificity of 97%. GCC mRNA above that threshold was detected in 76 of 367 (∼21%) nodes free of disease by histopathology from 6 of 23 (26%) patients, suggesting the presence of occult micrometastases. Conclusions: Quantifying GCC mRNA in tissues by RT-PCR employing external calibration standards is analytically robust and reproducible, with high clinicopathologic sensitivity and specificity. This validated assay is being applied to ∼10,000 lymph nodes in a prospective trial to define the sensitivity of GCC qRT-PCR for staging patients with colorectal cancer.


Cancer Biology & Therapy | 2011

Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.

Barbara Chiavarina; Diana Whitaker-Menezes; Ubaldo E. Martinez-Outschoorn; Agnieszka K. Witkiewicz; Ruth Birbe; Anthony Howell; Richard G. Pestell; Johanna A. Smith; René Daniel; Federica Sotgia; Michael P. Lisanti

We have previously demonstrated that enhanced aerobic glycolysis and/or autophagy in the tumor stroma supports epithelial cancer cell growth and aggressive behavior, via the secretion of high-energy metabolites. These nutrients include lactate and ketones, as well as chemical building blocks, such as amino acids (glutamine) and nucleotides. Lactate and ketones serve as fuel for cancer cell oxidative metabolism, and building blocks sustain the anabolic needs of rapidly proliferating cancer cells. We have termed these novel concepts the “Reverse Warburg Effect,” and the “Autophagic Tumor Stroma Model of Cancer Metabolism.” We have also identified a loss of stromal caveolin-1 (Cav-1) as a marker of stromal glycolysis and autophagy. The aim of the current study was to provide genetic evidence that enhanced glycolysis in stromal cells favors tumorigenesis. To this end, normal human fibroblasts were genetically-engineered to express the two isoforms of pyruvate kinase M (PKM1 and PKM2), a key enzyme in the glycolytic pathway. In a xenograft model, fibroblasts expressing PKM1 or PKM2 greatly promoted the growth of co-injected MDA-MB-231 breast cancer cells, without an increase in tumor angiogenesis. Interestingly, PKM1 and PKM2 promoted tumorigenesis by different mechanism(s). Expression of PKM1 enhanced the glycolytic power of stromal cells, with increased output of lactate. Analysis of tumor xenografts demonstrated that PKM1 fibroblasts greatly induced tumor inflammation, as judged by CD45 staining. In contrast, PKM2 did not lead to lactate accumulation, but triggered a “pseudo-starvation” response in stromal cells, with induction of an NFκB-dependent autophagic program, and increased output of the ketone body 3-hydroxy-buryrate. Strikingly, in situ evaluation of Complex IV activity in the tumor xenografts demonstrated that stromal PKM2 expression drives mitochondrial respiration specifically in tumor cells. Finally, immuno-histochemistry analysis of human breast cancer samples lacking stromal Cav-1 revealed PKM1 and PKM2 expression in the tumor stroma. Thus, our data indicate that a subset of human breast cancer patients with a loss of stromal Cav-1 show profound metabolic changes in the tumor microenvironment. As such, this subgroup of patients may benefit therapeutically from potent inhibitors targeting glycolysis, autophagy and/or mitochondrial activity (such as metformin).


Cell Cycle | 2012

BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: Implications for breast cancer prevention with antioxidant therapies

Ubaldo E. Martinez-Outschoorn; Renee M. Balliet; Zhao Lin; Diana Whitaker-Menezes; Ruth Birbe; Alessandro Bombonati; Stephanos Pavlides; Rebecca Lamb; Sharon Sneddon; Anthony Howell; Federica Sotgia; Michael P. Lisanti

Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype, with intense mitochondrial staining specifically in BRCA1-deficient breast cancer cells. In summary, loss of BRCA1 function leads to hydrogen peroxide generation in both epithelial breast cancer cells and neighboring stromal fibroblasts, and promotes the onset of a reactive glycolytic stroma, with increased MCT4 and decreased Cav-1 expression. Importantly, these metabolic changes can be reversed by antioxidants, which potently induce cancer cell death. Thus, antioxidant therapy appears to be synthetically lethal with a BRCA1-deficiency in breast cancer cells and should be considered for future cancer prevention trials. In this regard, immunostaining with Cav-1 and MCT4 could be used as cost-effective biomarkers to monitor the response to antioxidant therapy.


Cell Cycle | 2012

Is cancer a metabolic rebellion against host aging?: In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism

Adam Ertel; Aristotelis Tsirigos; Diana Whitaker-Menezes; Ruth Birbe; Stephanos Pavlides; Ubaldo E. Martinez-Outschoorn; Richard G. Pestell; Anthony Howell; Federica Sotgia; Michael P. Lisanti

Aging drives large systemic reductions in oxidative mitochondrial function, shifting the entire body metabolically towards aerobic glycolysis, a.k.a, the Warburg effect. Aging is also one of the most significant risk factors for the development of human cancers, including breast tumors. How are these two findings connected? One simplistic idea is that cancer cells rebel against the aging process by increasing their capacity for oxidative mitochondrial metabolism (OXPHOS). Then, local and systemic aerobic glycolysis in the aging host would provide energy-rich mitochondrial fuels (such as L-lactate and ketones) to directly “fuel” tumor cell growth and metastasis. This would establish a type of parasite-host relationship or “two-compartment tumor metabolism”, with glycolytic/oxidative metabolic-coupling. The cancer cells (“the seeds”) would flourish in this nutrient-rich microenvironment (“the soil”), which has been fertilized by host aging. In this scenario, cancer cells are only trying to save themselves from the consequences of aging, by engineering a metabolic mutiny, through the amplification of mitochondrial metabolism. We discuss the recent findings of Drs. Ron DePinho (MD Anderson) and Craig Thomspson (Sloan-Kettering) that are also consistent with this new hypothesis, linking cancer progression with metabolic aging. Using data mining and bioinformatics approaches, we also provide key evidence of a role for PGC1a/NRF1 signaling in the pathogenesis of (1) two-compartment tumor metabolism, and (2) mitochondrial biogenesis in human breast cancer cells.

Collaboration


Dive into the Ruth Birbe's collaboration.

Top Co-Authors

Avatar

Leonard G. Gomella

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Karen E. Knudsen

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter McCue

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Robert B. Den

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Adam P. Dicker

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Y. Feng

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge