Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth E. Westenbroek is active.

Publication


Featured researches published by Ruth E. Westenbroek.


Nature Neuroscience | 2006

Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy

Frank H. Yu; Massimo Mantegazza; Ruth E. Westenbroek; Carol A. Robbins; Franck Kalume; Kimberly A. Burton; William J. Spain; G. Stanley McKnight; Todd Scheuer; William A. Catterall

Voltage-gated sodium channels (NaV) are critical for initiation of action potentials. Heterozygous loss-of-function mutations in NaV1.1 channels cause severe myoclonic epilepsy in infancy (SMEI). Homozygous null Scn1a−/− mice developed ataxia and died on postnatal day (P) 15 but could be sustained to P17.5 with manual feeding. Heterozygous Scn1a+/− mice had spontaneous seizures and sporadic deaths beginning after P21, with a notable dependence on genetic background. Loss of NaV1.1 did not change voltage-dependent activation or inactivation of sodium channels in hippocampal neurons. The sodium current density was, however, substantially reduced in inhibitory interneurons of Scn1a+/− and Scn1a−/− mice but not in their excitatory pyramidal neurons. An immunocytochemical survey also showed a specific upregulation of NaV1.3 channels in a subset of hippocampal interneurons. Our results indicate that reduced sodium currents in GABAergic inhibitory interneurons in Scn1a+/− heterozygotes may cause the hyperexcitability that leads to epilepsy in patients with SMEI.


Neuron | 1992

Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit

Ruth E. Westenbroek; Johannes W. Hell; Concepcion Warner; Stefan J. Dubel; Terry P. Snutch; William A. Catterall

Abstract A site-directed anti-peptide antibody, CNB-1, that recognizes the α1 subunit of rat brain class B calcium channels (rbB) immunoprecipitated 43% of the N-type calcium channels labeled by [ 125 I]ω-conotoxin. CNB-1 recognized proteins of 240 and 210 kd, suggesting the presence of two size forms of this α1 subunit. Calcium channels recognized by CNB-1 were localized predominantly in dendrites; both dendritic shafts and punctate synaptic structures upon the dendrites were labeled. The large terminals of the mossy fibers of the dentate gyrus granule neurons were heavily labeled, suggesting that the punctate labeling pattern represents calcium channels in nerve terminals. The pattern of immunostaining was cell specific. The cell bodies of some pyramidal cells in layers II, III, and V of the dorsal cortex, Purkinje cells, and scattered cell bodies elsewhere in the brain were also labeled at a low level. The results define complementary distributions of N- and L-type calcium channels in dendrites, nerve terminals, and cell bodies of most central neurons and support distinct functional roles in calcium-dependent electrical activity, intracellular calcium regulation, and neurotransmitter release for these two channel types.


Neuron | 2006

The Endocannabinoid System Controls Key Epileptogenic Circuits in the Hippocampus

Krisztina Monory; Federico Massa; Michaela Egertová; Matthias Eder; Heike Blaudzun; Ruth E. Westenbroek; Wolfgang Kelsch; W. Jacob; Rudolf Marsch; Marc Ekker; Jason E. Long; John L.R. Rubenstein; Sandra Goebbels; Klaus-Armin Nave; Matthew J. During; Matthias Klugmann; Barbara Wölfel; Hans-Ulrich Dodt; Walter Zieglgänsberger; Carsten T. Wotjak; Ken Mackie; Maurice R. Elphick; Giovanni Marsicano; Beat Lutz

Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.


Cell | 1995

Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif

Lori L. Isom; D.S. Ragsdale; K S De Jongh; Ruth E. Westenbroek; B.F.X. Reber; Todd Scheuer; William A. Catterall

Voltage-gated sodium channels in brain neurons are complexes of a pore-forming alpha subunit with smaller beta 1 and beta 2 subunits. cDNA cloning and sequencing showed that the beta 2 subunit is a 186 residue glycoprotein with an extracellular NH2-terminal domain containing an immunoglobulin-like fold with similarity to the neural cell adhesion molecule (CAM) contactin, a single transmembrane segment, and a small intracellular domain. Coexpression of beta 2 with alpha subunits in Xenopus oocytes increases functional expression, modulates gating, and causes up to a 4-fold increase in the capacitance of the oocyte, which results from an increase in the surface area of the plasma membrane microvilli. beta 2 subunits are unique among the auxiliary subunits of ion channels in combining channel modulation with a CAM motif and the ability to expand the cell membrane surface area. They may be important regulators of sodium channel expression and localization in neurons.


Neuron | 1989

Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons

Ruth E. Westenbroek; Dawn Merrick; William A. Catterall

Immunocytochemical localization of Na+ channel subtypes RI and RII showed that RI immunoreactivity is relatively low and homogeneous along the rostral-caudal extent of sagittal brain sections, whereas RII staining is heterogeneous and relatively dense in the forebrain, substantia nigra, hippocampus, and cerebellum. The somata of the dentate granule cells, hippocampal pyramidal cells, cerebellar Purkinje cells, and spinal motor neurons are immunoreactive for RI but not RII. In contrast, areas rich in unmyelinated nerve fibers, such as the mossy fibers of the dentate granule cells, the stratum radiatum and stratum oriens of the hippocampus, and the molecular layer of the cerebellum, are strongly immunoreactive for RII but not RI. Differential regulation of expression of RI and RII genes may allow differential modulation of Na+ channel density in somata and axons. The sites of RI localization correlate closely with sites where sustained Na+ currents have been recorded.


Proceedings of the National Academy of Sciences of the United States of America | 2003

CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm

Anne E. Carlson; Ruth E. Westenbroek; Timothy A. Quill; Dejian Ren; David E. Clapham; Bertil Hille; David L. Garbers; Donner F. Babcock

CatSper family proteins are putative ion channels expressed exclusively in membranes of the sperm flagellum and required for male fertility. Here, we show that mouse CatSper1 is essential for depolarization-evoked Ca2+ entry and for hyperactivated movement, a key flagellar function. CatSper1 is not needed for other developmental landmarks, including regional distributions of CaV1.2, CaV2.2, and CaV2.3 ion channel proteins, the cAMP-mediated activation of motility by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document}, and the protein phosphorylation cascade of sperm capacitation. We propose that CatSper1 functions as a voltage-gated Ca2+ channel that controls Ca2+ entry to mediate the hyperactivated motility needed late in the preparation of sperm for fertilization.


Nature | 2012

Autistic-like behaviour in Scn1a +/− mice and rescue by enhanced GABA-mediated neurotransmission

Sung Han; Chao Tai; Ruth E. Westenbroek; Frank H. Yu; Christine S. Cheah; Gregory B. Potter; John L.R. Rubenstein; Todd Scheuer; Horacio O. de la Iglesia; William A. Catterall

Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet’s syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet’s syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet’s syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet’s syndrome.


Neuron | 1990

Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina

Michael K. Ahlijanian; Ruth E. Westenbroek; William A. Catterall

Monoclonal antibodies that recognize the alpha 2 delta subunits of calcium channels from skeletal muscle immunoprecipitate a complex of alpha 1, alpha 2 delta, beta, and gamma subunits. They also immunoprecipitate 64% of rabbit brain dihydropyridine-sensitive calcium channels. Iodination of partially purified brain calcium channels followed by immunoprecipitation reveals alpha 1-, alpha 2 delta-, and beta-like subunits that have apparent molecular masses of 175, 142, and 57 kd, respectively. A polypeptide of 100 kd is also specifically immunoprecipitated. Immunocytochemical studies identify dihydropyridine-sensitive calcium channels in neuronal somata and proximal dendrites in rat brain, spinal cord, and retina. Staining of many neuronal somata is uneven, revealing relatively high densities of dihydropyridine-sensitive calcium channels at the base of major dendrites. L-type calcium channels in this location may serve to mediate long-lasting increases in intracellular calcium in the cell body in response to excitatory inputs to the dendrites.


Proceedings of the National Academy of Sciences of the United States of America | 2002

An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart

Sebastian K.G. Maier; Ruth E. Westenbroek; Kenneth A. Schenkman; Eric O. Feigl; Todd Scheuer; William A. Catterall

Voltage-gated sodium channels composed of pore-forming α and auxiliary β subunits are responsible for the rising phase of the action potential in cardiac muscle, but the functional roles of distinct sodium channel subtypes have not been clearly defined. Immunocytochemical studies show that the principal cardiac pore-forming α subunit isoform Nav1.5 is preferentially localized in intercalated disks, whereas the brain α subunit isoforms Nav1.1, Nav1.3, and Nav1.6 are localized in the transverse tubules. Sodium currents due to the highly tetrodotoxin (TTX)-sensitive brain isoforms in the transverse tubules are small and are detectable only after activation with β scorpion toxin. Nevertheless, they play an important role in coupling depolarization of the cell surface membrane to contraction, because low TTX concentrations reduce left ventricular function. Our results suggest that the principal cardiac isoform in the intercalated disks is primarily responsible for action potential conduction between cells and reveal an unexpected role for brain sodium channel isoforms in the transverse tubules in coupling electrical excitation to contraction in cardiac muscle.


The Journal of Neuroscience | 2004

Mice Lacking Sodium Channel β1 Subunits Display Defects in Neuronal Excitability, Sodium Channel Expression, and Nodal Architecture

Chunling Chen; Ruth E. Westenbroek; Xiaorong Xu; Chris A. Edwards; Dorothy R. Sorenson; Yuan Chen; Dyke P. McEwen; Heather A. O'Malley; Vandana Bharucha; Laurence S. Meadows; Gabriel A. Knudsen; Alex Vilaythong; Jeffrey L. Noebels; Thomas L. Saunders; Todd Scheuer; Peter Shrager; William A. Catterall; Lori L. Isom

Sodium channel β1 subunits modulate α subunit gating and cell surface expression and participate in cell adhesive interactions in vitro. β1(-/-) mice appear ataxic and display spontaneous generalized seizures. In the optic nerve, the fastest components of the compound action potential are slowed and the number of mature nodes of Ranvier is reduced, but Nav1.6, contactin, caspr 1, and Kv1 channels are all localized normally at nodes. At the ultrastructural level, the paranodal septate-like junctions immediately adjacent to the node are missing in a subset of axons, suggesting that β1 may participate in axo-glial communication at the periphery of the nodal gap. Sodium currents in dissociated hippocampal neurons are normal, but Nav1.1 expression is reduced and Nav1.3 expression is increased in a subset of pyramidal neurons in the CA2/CA3 region, suggesting a basis for the epileptic phenotype. Our results show that β1 subunits play important roles in the regulation of sodium channel density and localization, are involved in axo-glial communication at nodes of Ranvier, and are required for normal action potential conduction and control of excitability in vivo.

Collaboration


Dive into the Ruth E. Westenbroek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd Scheuer

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Frank H. Yu

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck Kalume

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angus M. Brown

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge