Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. T. Claude Chan is active.

Publication


Featured researches published by H. T. Claude Chan.


Blood | 2010

Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection

Stephen A. Beers; Ruth R. French; H. T. Claude Chan; Sean H. Lim; Timothy C. Jarrett; Regina Mora Vidal; Sahan S. Wijayaweera; Sandra V. Dixon; Hyungjin Kim; Kerry L. Cox; Jonathan P. Kerr; David A. Johnston; Peter Johnson; J. Sjef Verbeek; Martin J. Glennie; Mark S. Cragg

Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.


Journal of Immunology | 2011

Interaction with FcγRIIB Is Critical for the Agonistic Activity of Anti-CD40 Monoclonal Antibody

Ann L. White; H. T. Claude Chan; Ali Roghanian; Ruth R. French; C. Ian Mockridge; Alison L. Tutt; Sandra V. Dixon; Daniel Ajona; J. Sjef Verbeek; Aymen Al-Shamkhani; Mark S. Cragg; Stephen A. Beers; Martin J. Glennie

A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10–100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.


European Journal of Immunology | 2002

Expression and costimulatory effects of the TNF receptor superfamily members CD134 (OX40) and CD137 (4-1BB), and their role in the generation of anti-tumor immune responses

Vadim Y. Taraban; Tania F. Rowley; Lyn O'Brien; H. T. Claude Chan; Linsey E. Haswell; Michael H.A. Green; Alison L. Tutt; Martin J. Glennie; Aymen Al-Shamkhani

This study addresses the relative importance of CD134 (OX40) and CD137 (4‐1BB) in the costimulation of CD4+ and CD8+ T cells under comparable conditions of antigenic stimulation. We demonstrate that CD134 is capable of directly costimulating CD8+ T cells. However, costimulation of CD8+ T cells by CD134 is less potent than that triggered by CD137. The higher costimulatory activity of CD137, when compared with CD134, correlates well with its faster expression kinetics and higher levels on CD8+ T cells. Furthermore, induction of CD137 expression on CD8+ T cells is highly sensitive to low levels of TCR stimulation, which is in contrast with CD134. Conversely, CD134 is more effective than CD137 in costimulating CD4+ T cells. This, however, could not be attributed to differential expression. We also demonstrate that the transient nature of CD134 and CD137 expression on activated CD4+ T cells is the resultof proteolytic shedding. Consistent with the greater ability of CD137 to costimulate CD8+ T cells, stimulation of CD137 in vivo is considerably more effective than CD134 in augmenting anti‐tumor immune responses. Therefore, agents that stimulate signaling via CD137 are likely to be more useful in clinical conditions where highly effective CD8+ CTL responses are required.


Cancer Cell | 2015

Conformation of the Human Immunoglobulin G2 Hinge Imparts Superagonistic Properties to Immunostimulatory Anticancer Antibodies

Ann L. White; H. T. Claude Chan; Ruth R. French; Jane E. Willoughby; C. Ian Mockridge; Ali Roghanian; Christine A. Penfold; Steven G. Booth; Ali Dodhy; Marta E. Polak; Elizabeth A. Potter; Michael R. Ardern-Jones; J. Sjef Verbeek; Peter Johnson; Aymen Al-Shamkhani; Mark S. Cragg; Stephen A. Beers; Martin J. Glennie

Summary Monoclonal antibody (mAb) drugs that stimulate antitumor immunity are transforming cancer treatment but require optimization for maximum clinical impact. Here, we show that, unlike other immunoglobulin isotypes, human IgG2 (h2) imparts FcγR-independent agonistic activity to immune-stimulatory mAbs such as anti-CD40, -4-1BB, and -CD28. Activity is provided by a subfraction of h2, h2B, that is structurally constrained due its unique arrangement of hinge region disulfide bonds. Agonistic activity can be transferred from h2 to h1 by swapping their hinge and CH1 domains, and substitution of key hinge and CH1 cysteines generates homogenous h2 variants with distinct agonistic properties. This provides the exciting opportunity to engineer clinical reagents with defined therapeutic activity regardless of FcγR expression levels in the local microenvironment.


Journal of Immunology | 2014

Fcγ Receptor Dependency of Agonistic CD40 Antibody in Lymphoma Therapy Can Be Overcome through Antibody Multimerization

Ann L. White; Lang Dou; H. T. Claude Chan; Vikki L. Field; C. Ian Mockridge; Kane Moss; Emily L. Williams; Steven G. Booth; Ruth R. French; Elizabeth A. Potter; Cherié L. Butts; Aymen Al-Shamkhani; Mark S. Cragg; J. Sjef Verbeek; Peter Johnson; Martin J. Glennie; Stephen A. Beers

Immunomodulatory mAbs, led by the anti-CTLA4 mAb ipilimumab, are an exciting new class of drugs capable of promoting anticancer immunity and providing durable control of some tumors. Close analysis of a number of agents has revealed a critical yet variable role for Fcγ receptors in their efficacy. In this article, we reveal that agonistic anti-CD40 mAbs have an absolute requirement for cross-linking by inhibitory FcγRIIB when used systemically to treat established BCL1 syngeneic lymphoma, and therapy is lost when using a mouse IgG2a mAb not cross-linked by FcγRIIB. Furthermore, in FcγRIIB-deficient mice the lymphoma itself can provide FcγRIIB to cross-link anti-CD40 on neighboring cells, and only when this is blocked does therapy fail. The dependence on FcγRIIB for immunostimulatory activity was not absolute, however, because when anti-CD40 mAbs were administered systemically with the TLR3 agonist polyinosinic:polycytidylic acid or were given subcutaneously, activatory FcγR could also provide cross-linking. Using this mechanistic insight, we designed multimeric forms of anti-CD40 mAb with intrinsic FcγR-independent activity that were highly effective in the treatment of lymphoma-bearing mice. In conclusion, FcγR-independent anti-CD40 activation is a viable strategy in vivo. These findings have important translational implications, as humans, unlike mice, do not have IgG that binds strongly to FcγRIIB; therefore FcγR-independent derivatives represent an attractive therapeutic option.


Cancer Immunology, Immunotherapy | 2013

FcγRΙΙB controls the potency of agonistic anti-TNFR mAbs

Ann L. White; H. T. Claude Chan; Ruth R. French; Stephen A. Beers; Mark S. Cragg; Peter Johnson; Martin J. Glennie

Isotype plays a crucial role in therapeutic monoclonal antibody (mAb) function, mediated in large part through differences in Fcγ receptor (FcγR) interaction. Monoclonal Abs such as rituximab and alemtuzumab, which bind target cells directly, are designed for efficient recruitment of immune effector cells through their activatory FcγR engagement to mediate maximal target cell killing. In this setting, binding to inhibitory FcγRIIB is thought to inhibit function, making mAbs with high activatory/inhibitory (A/I) FcγR binding ratios, such as mouse IgG2a and human IgG1, the first choice for this role. In contrast, exciting new data show that agonistic mAbs directed against the tumour necrosis factor receptor superfamily member CD40 require interaction with FcγRIIB for in vivo function. Such ligation activates antigen-presenting cells, promotes myeloid and CTL responses and potentially stimulates effective anti-cancer immunity. It appears that the role of FcγRIIB is to mediate mAb hyper-crosslinking to allow CD40 downstream intracellular signalling. Previous work has shown that mAbs directed against other TNFR family members, Fas and death receptor 5 and probably death receptor 4, also require FcγRIIB hyper-crosslinking to promote target cell apoptosis, suggesting a common mechanism of action. In mouse models, IgG1 is optimal for these agents as it binds to FcγRIIB with tenfold higher affinity than IgG2a and hence has a relatively low A:I FcγR binding ratio. In contrast, human IgG isotypes have a universally low affinity for FcγRIIB, but in the case of human IgG1, engineering the Fc to increase its affinity for FcγRIIB can potentially overcome this problem. Thus, modifying the A/I binding ratio of human IgG Fc can be used to optimise different types of therapeutic activity by enhancing cytotoxic or hyper-crosslinking function.


European Journal of Immunology | 2012

Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcγRIIB (CD32B)

Emily L. Williams; Alison L. Tutt; Ruth R. French; H. T. Claude Chan; Betty Lau; Christine A. Penfold; C. Ian Mockridge; Ali Roghanian; Kerry L. Cox; J. Sjef Verbeek; Martin J. Glennie; Mark S. Cragg

Fc receptors (FcRs) play a key role in regulating and coordinating responses from both innate and adaptive arms of the immune system. The inhibitory Fc gamma receptor II (FcγRIIB; CD32) is central to this regulation with FcγRIIB−/− mice demonstrating augmented responses to mAb immunotherapy, elevated incidence and severity of auto‐immunity, and increased response to mAb‐mediated cancer therapy. To date, these observations have remained unexploited therapeutically, partly through a lack of specific mAb reagents capable of exclusively binding mouse FcγRIIB. Thus almost all of the FcγRIIB‐binding mAb currently available, such as 2.4G2, also bind FcγRIII (CD16), and polyclonal reagents have limited availability and are of unproven specificity and avidity, making in vivo manipulation of FcγRIIB impossible. Following an extensive immunisation protocol using FcγRIIB−/− mice, we recently produced three unique mAb that are suitable for this purpose. Here we characterise these novel reagents and demonstrate that they fall into two distinct categories; those which cause phosphorylation and subsequent activation of FcγRIIB (agonistic) and those that block receptor phosphorylation (antagonistic). These two types of mAb exhibit different characteristics in a range of biochemical, cellular, and functional assays relevant to FcγRIIB activity and mAb therapy.


Clinical Cancer Research | 2015

Clinical and Biological Effects of an Agonist Anti-CD40 Antibody: A Cancer Research UK Phase I Study

Peter Johnson; Ruth Challis; Ferdousi Chowdhury; Yifang Gao; Melanie Harvey; Tom Geldart; Paul Kerr; H. T. Claude Chan; Anna Smith; Neil Steven; Ceri Edwards; Margaret Ashton-Key; Elisabeth Hodges; Alison L. Tutt; Christian Ottensmeier; Martin J. Glennie; Anthony P. Williams

Purpose: This phase I study aimed to establish the biologic effects and MTD of the agonistic IgG1 chimeric anti-CD40 antibody ChiLob7/4 in patients (pts) with a range of CD40-expressing solid tumors and diffuse large B-cell lymphoma, resistant to conventional therapy. Potential mechanisms of action for agonistic anti-CD40 include direct cytotoxic effects on tumor cells and conditioning of antigen-presenting cells. Experimental Design: ChiLob7/4 was given by IV infusion weekly for 4 doses at a range from 0.5 to 240 mg/dose. Validated ELISAs were used to quantify ChiLob7/4 in serum and test for anti-chimeric MAb (HACA) responses. Pharmacodynamic assessments included quantitation of T-cell, natural killer–cell, and B-cell numbers and activation in blood by flow cytometry and a panel of cytokines in plasma by Luminex technology. Planned dose escalation was in cohorts of 3 patients until MTD or biologic effect, defined as reduction of peripheral blood CD19+ B cells to 10% or less of baseline. Results: Twenty-nine courses of treatment were given to 28 subjects. The MTD was 200 mg × 4, with dose-limiting toxicity of liver transaminase elevations at 240 mg. At 200 mg (range between 2.1 mg/kg and 3.3 mg/kg based on patient body weight), the trough level pretreatment was above 25 μg/mL. Grade 1-2 infusion reactions were seen above the dose of 16 mg, but could be prevented with single-dose corticosteroid premedication. HACA responses were seen after doses between 1.6 mg and 50 mg, but not above this. There were dose-dependent falls in blood B-cell numbers accompanied by reduced expression of CD21, and transient reductions in NK cell numbers with increased CD54 expression from 50 mg upward. MIP-1β and IL12 plasma concentrations rose after doses above 16 mg. Fifteen of 29 treatments were accompanied by disease stabilization for a median 6 months, the longest for 37 months. Conclusions: ChiLob7/4 can activate B and NK cells at doses that can be administered safely, and should be tested in combination with other antibodies and chemotherapy agents. Clin Cancer Res; 21(6); 1321–8. ©2015 AACR.


Journal of Immunology | 2015

Development and Characterization of Monoclonal Antibodies Specific for Mouse and Human Fcγ Receptors

Alison L. Tutt; Sonya James; Stéphanie A. Laversin; Thomas R W Tipton; Margaret Ashton-Key; Ruth R. French; Khiyam Hussain; Andrew T. Vaughan; Lang Dou; Alexander Earley; Lekh N. Dahal; Chih-Chen Lu; Melanie S. Dunscombe; H. T. Claude Chan; Christine A. Penfold; Jinny H. Kim; Elizabeth A. Potter; C. Ian Mockridge; Ali Roghanian; Robert J. Oldham; Kerry L. Cox; Sean H. Lim; Ingrid Teige; Björn Frendéus; Martin J. Glennie; Stephen A. Beers; Mark S. Cragg

FcγRs are key regulators of the immune response, capable of binding to the Fc portion of IgG Abs and manipulating the behavior of numerous cell types. Through a variety of receptors, isoforms, and cellular expression patterns, they are able to fine-tune and direct appropriate responses. Furthermore, they are key determinants of mAb immunotherapy, with mAb isotype and FcγR interaction governing therapeutic efficacy. Critical to understanding the biology of this complex family of receptors are reagents that are robust and highly specific for each receptor. In this study, we describe the development and characterization of mAb panels specific for both mouse and human FcγR for use in flow cytometry, immunofluorescence, and immunocytochemistry. We highlight key differences in expression between the two species and also patterns of expression that will likely impact on immunotherapeutic efficacy and translation of therapeutic agents from mouse to clinic.


Journal of Immunology | 2017

Antibody Distance from the Cell Membrane Regulates Antibody Effector Mechanisms

Kirstie L.S. Cleary; H. T. Claude Chan; Sonja James; Martin J. Glennie; Mark S. Cragg

Immunotherapy using mAbs, such as rituximab, is an established means of treating hematological malignancies. Abs can elicit a number of mechanisms to delete target cells, including complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity, and Ab-dependent cellular phagocytosis. The inherent properties of the target molecule help to define which of these mechanisms are more important for efficacy. However, it is often unclear why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules was generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains to produce a panel of chimeric molecules that held the target epitope at different distances along the protein. It was shown that complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity favored a membrane-proximal epitope, whereas Ab-dependent cellular phagocytosis favored an epitope positioned further away. These findings were confirmed using reagents targeting the membrane-proximal or -distal domains of CD137 itself before investigating these properties in vivo, where a clear difference in the splenic clearance of transfected tumor cells was observed. Together, this work demonstrates how altering the position of the Ab epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents.

Collaboration


Dive into the H. T. Claude Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Cragg

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Ruth R. French

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison L. Tutt

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Peter Johnson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sjef Verbeek

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ali Roghanian

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge