Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth Serra-Moreno is active.

Publication


Featured researches published by Ruth Serra-Moreno.


PLOS Pathogens | 2009

Species-Specific Activity of SIV Nef and HIV-1 Vpu in Overcoming Restriction by Tetherin/BST2

Bin Jia; Ruth Serra-Moreno; William J. Neidermyer; Andrew R. Rahmberg; MacKey Jj; Ismael Farouck Fofana; Welkin E. Johnson; Susan V. Westmoreland; David T. Evans

Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host–cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIVsmm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIVmac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIVsmm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.


Trends in Microbiology | 2010

BST-2/tetherin: a new component of the innate immune response to enveloped viruses

David T. Evans; Ruth Serra-Moreno; Rajendra Singh; John C. Guatelli

The interferon-inducible, transmembrane protein BST-2 (CD317, tetherin) directly holds fully formed enveloped virus particles to the cells that produce them, inhibiting their spread. BST-2 inhibits members of the retrovirus, filovirus, arenavirus and herpesvirus families. These viruses encode a variety of proteins to degrade BST-2 and/or direct it away from its site of action at the cell surface. Viral antagonism has subjected BST-2 to positive selection, leading to species-specific differences that presented a barrier to the transmission of simian immunodeficiency viruses (SIVs) to humans. This barrier was crossed by HIV-1 when its Vpu protein acquired activity as a BST-2 antagonist. Here, we review this new host-pathogen relationship and discuss its impact on the evolution of primate lentiviruses and the origins of the HIV pandemic.


Cell Host & Microbe | 2011

Compensatory Changes in the Cytoplasmic Tail of gp41 Confer Resistance to Tetherin/BST-2 in a Pathogenic Nef-deleted SIV

Ruth Serra-Moreno; Bin Jia; Matthew W. Breed; Xavier Alvarez; David T. Evans

Tetherin (BST-2 or CD317) is an interferon-inducible transmembrane protein that inhibits virus release from infected cells. Whereas HIV-1 Vpu and HIV-2 Env counteract human tetherin, most SIVs use Nef to antagonize the tetherin proteins of their nonhuman primate hosts. Here, we show that compensatory changes in the cytoplasmic domain of SIV gp41, acquired by a nef-deleted virus that regained a pathogenic phenotype in infected rhesus macaques, restore resistance to tetherin. These changes facilitate virus release in the presence of rhesus tetherin, but not human tetherin, and enhance virus replication in interferon-treated primary lymphocytes. The substitutions in gp41 result in a selective physical association with rhesus tetherin, and the internalization and sequestration of rhesus tetherin by a mechanism that depends on a conserved endocytosis motif in gp41. These results are consistent with HIV-2 Env antagonism of human tetherin and suggest that the ability to oppose tetherin is important for lentiviral pathogenesis.


Journal of Bacteriology | 2007

Insertion Site Occupancy by stx2 Bacteriophages Depends on the Locus Availability of the Host Strain Chromosome

Ruth Serra-Moreno; Juan Jofre; Maite Muniesa

Shiga toxin-producing Escherichia coli (STEC) is an emergent pathogen characterized by the expression of Shiga toxins, which are encoded in the genomes of lambdoid phages. These phages are infectious for other members of the Enterobacteriaceae and establish lysogeny when they integrate into the host chromosome. Five insertion sites, used mainly by these prophages, have been described to date. In the present study, the insertion of stx(2) prophages in these sites was analyzed in 168 STEC strains isolated from cattle. Additionally, insertion sites were determined for stx(2) phages which (i) converted diverse laboratory host strains, (ii) coexisted with another stx(2) prophage, and (iii) infected a recombinant host strain lacking the most commonly used insertion site. Results show that depending on the host strain, phages preferentially use one insertion site. For the most part, yehV is occupied in STEC strains while wrbA is preferentially selected by the same stx phages in E. coli laboratory strains. If this primary insertion site is unavailable, then a secondary insertion site is selected. It can be concluded that insertion site occupancy by stx phages depends on the host strain and on the availability of the preferred locus in the host strain.


Applied and Environmental Microbiology | 2009

Phage-Mediated Shiga Toxin 2 Gene Transfer in Food and Water

Lejla Imamovic; Juan Jofre; Herbert Schmidt; Ruth Serra-Moreno; Maite Muniesa

ABSTRACT Shiga toxin (stx) transduction in various food matrices has been evaluated with lysogens of Stx phages. stx transduction events were observed for many phages under appropriate conditions. Transduction did not occur at low pH and low temperatures. A total of 103 to 104 CFU ml−1 was the minimal amount of donor and recipient strains necessary to generate transductants.


Journal of Bacteriology | 2008

The CI Repressors of Shiga Toxin-Converting Prophages Are Involved in Coinfection of Escherichia coli Strains, Which Causes a Down Regulation in the Production of Shiga Toxin 2

Ruth Serra-Moreno; J. Jofre; Maite Muniesa

Shiga toxins (Stx) are the main virulence factors associated with a form of Escherichia coli known as Shiga toxin-producing E. coli (STEC). They are encoded in temperate lambdoid phages located on the chromosome of STEC. STEC strains can carry more than one prophage. Consequently, toxin and phage production might be influenced by the presence of more than one Stx prophage on the bacterial chromosome. To examine the effect of the number of prophages on Stx production, we produced E. coli K-12 strains carrying either one Stx2 prophage or two different Stx2 prophages. We used recombinant phages in which an antibiotic resistance gene (aph, cat, or tet) was incorporated in the middle of the Shiga toxin operon. Shiga toxin was quantified by immunoassay and by cytotoxicity assay on Vero cells (50% cytotoxic dose). When two prophages were inserted in the host chromosome, Shiga toxin production and the rate of lytic cycle activation fell. The cI repressor seems to be involved in incorporation of the second prophage. Incorporation and establishment of the lysogenic state of the two prophages, which lowers toxin production, could be regulated by the CI repressors of both prophages operating in trans. Although the sequences of the cI genes of the phages studied differed, the CI protein conformation was conserved. Results indicate that the presence of more than one prophage in the host chromosome could be regarded as a mechanism to allow genetic retention in the cell, by reducing the activation of lytic cycle and hence the pathogenicity of the strains.


PLOS Pathogens | 2013

Tetherin/BST-2 Antagonism by Nef Depends on a Direct Physical Interaction between Nef and Tetherin, and on Clathrin-mediated Endocytosis

Ruth Serra-Moreno; Kerstin Zimmermann; Lawrence J. Stern; David T. Evans

Nef is the viral gene product employed by the majority of primate lentiviruses to overcome restriction by tetherin (BST-2 or CD317), an interferon-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. Although the mechanisms of tetherin antagonism by HIV-1 Vpu and HIV-2 Env have been investigated in detail, comparatively little is known about tetherin antagonism by SIV Nef. Here we demonstrate a direct physical interaction between SIV Nef and rhesus macaque tetherin, define the residues in Nef required for tetherin antagonism, and show that the anti-tetherin activity of Nef is dependent on clathrin-mediated endocytosis. SIV Nef co-immunoprecipitated with rhesus macaque tetherin and the Nef core domain bound directly to a peptide corresponding to the cytoplasmic domain of rhesus tetherin by surface plasmon resonance. An analysis of alanine-scanning substitutions identified residues throughout the N-terminal, globular core and flexible loop regions of Nef that were required for tetherin antagonism. Although there was significant overlap with sequences required for CD4 downregulation, tetherin antagonism was genetically separable from this activity, as well as from other Nef functions, including MHC class I-downregulation and infectivity enhancement. Consistent with a role for clathrin and dynamin 2 in the endocytosis of tetherin, dominant-negative mutants of AP180 and dynamin 2 impaired the ability of Nef to downmodulate tetherin and to counteract restriction. Taken together, these results reveal that the mechanism of tetherin antagonism by Nef depends on a physical interaction between Nef and tetherin, requires sequences throughout Nef, but is genetically separable from other Nef functions, and leads to the removal of tetherin from sites of virus release at the plasma membrane by clathrin-mediated endocytosis.


Journal of Applied Microbiology | 2009

Quantification of Shiga toxin 2-encoding bacteriophages, by real-time PCR and correlation with phage infectivity.

Lejla Imamovic; Ruth Serra-Moreno; Juan Jofre; Maite Muniesa

Aims:  To evaluate a qPCR‐based protocol for the enumeration of Shiga toxin (Stx) 2 phages and to compare the results of qPCR with the number of infective Stx phage particles.


PLOS Pathogens | 2014

BCA2/Rabring7 Targets HIV-1 Gag for Lysosomal Degradation in a Tetherin-Independent Manner

Ramya Nityanandam; Ruth Serra-Moreno

BCA2 (Rabring7, RNF115 or ZNF364) is a RING-finger E3 ubiquitin ligase that was identified as a co-factor in the restriction imposed by tetherin/BST2 on HIV-1. Contrary to the current model, in which BCA2 lacks antiviral activity in the absence of tetherin, we found that BCA2 possesses tetherin-independent antiviral activity. Here we show that the N-terminus of BCA2 physically interacts with the Matrix region of HIV-1 and other retroviral Gag proteins and promotes their ubiquitination, redistribution to endo-lysosomal compartments and, ultimately, lysosomal degradation. The targeted depletion of BCA2 in tetherin-expressing and tetherin-deficient cells results in a significant increase in virus release and replication, indicating that endogenous BCA2 possesses antiviral activity. Therefore, these results indicate that BCA2 functions as an antiviral factor that targets HIV-1 Gag for degradation, impairing virus assembly and release.


Current HIV Research | 2016

Anti-HIV Factors: Targeting Each Step of HIV’s Replication Cycle

Marta Colomer-Lluch; Lauren S. Gollahon; Ruth Serra-Moreno

BACKGROUND Similar to other animal viruses, HIV-1 relies on the contributions of the cellular machinery to ensure efficient virus propagation. However, human cells have evolved refined mechanisms to block key steps of the virus life-cycle, thereby suppressing viral replication. These cellular proteins are generally known as restriction factors, and they provide an early antiviral defense. So far, five potent restriction factors have been shown to effectively block HIV and/or SIV replication. These are TRIM5 proteins, SAMHD-1, members of the APOBEC3 (A3) family, Mx2 and Tetherin/BST-2. RESULTS Here, we review the antiviral mechanisms of these and other antiviral factors, their interaction with the innate immune responses, and how their functions might be exploited to clear and prevent HIV infection. CONCLUSION Since the majority of vaccine approaches against HIV have failed so far, it is imperative to start looking at alternative strategies for vaccine and therapy development. By better understanding how HIV hijacks the cellular machinery for its own benefit in completing its life-cycle, and how the virus adapts to circumvent our intrinsic immunity, we will be better equipped to design compounds that specifically interrupt virus replication and spread.

Collaboration


Dive into the Ruth Serra-Moreno's collaboration.

Top Co-Authors

Avatar

David T. Evans

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Jofre

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin von Bredow

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David H. O'Connor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge