Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruud F. Toonen is active.

Publication


Featured researches published by Ruud F. Toonen.


Neuron | 2001

Munc18-1 Promotes Large Dense-Core Vesicle Docking

Thomas Voets; Ruud F. Toonen; Elisabeth C. Brian; Heidi de Wit; Tobias Moser; Jens Rettig; Thomas C. Südhof; Erwin Neher; M. Verhage

Secretory vesicles dock at the plasma membrane before Ca(2+) triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was reduced 10-fold in mouse chromaffin cells lacking Munc18-1, but the kinetic properties of the remaining release, including single fusion events, were not different from controls. Concomitantly, mutant cells displayed a 10-fold reduction in morphologically docked LDCVs. Moreover, acute overexpression of Munc18-1 in bovine chromaffin cells increased the amount of releasable vesicles and accelerated vesicle supply. We conclude that Munc18-1 functions upstream of SNARE complex formation and promotes LDCV docking.


Trends in Cell Biology | 2003

Vesicle trafficking: pleasure and pain from SM genes

Ruud F. Toonen; Matthijs Verhage

Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central aspect of the final fusion reaction in many, if not all, routes and that SNARE complexes in different routes and species form in a similar manner. It is also evident that a second gene family, the Sec1/Munc18 genes (SM genes), plays a prominent role in vesicle trafficking. But, in contrast to the consensus and clarity about SNARE proteins, recent data on SM proteins in different systems produce an uncomfortable heterogeneity of ideas about their exact role, their site of action and their relation to SNARE proteins. This review examines whether a universal principle for the molecular function of SM genes exists and whether the divergence in SM gene function can be related to the unique characteristics of different transport routes.


Neuron | 2007

Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity

Keimpe Wierda; Ruud F. Toonen; Heidi de Wit; Arjen B. Brussaard; Matthijs Verhage

Diacylglycerol (DAG) is a prominent endogenous modulator of synaptic transmission. Recent studies proposed two apparently incompatible pathways, via protein kinase C (PKC) and via Munc13. Here we show how these two pathways converge. First, we confirm that DAG analogs indeed continue to potentiate transmission after PKC inhibition (the Munc13 pathway), but only in neurons that previously experienced DAG analogs, before PKC inhibition started. Second, we identify an essential PKC pathway by expressing a PKC-insensitive Munc18-1 mutant in munc18-1 null mutant neurons. This mutant supported basic transmission, but not DAG-induced potentiation and vesicle redistribution. Moreover, synaptic depression was increased, but not Ca2+-independent release evoked by hypertonic solutions. These data show that activation of both PKC-dependent and -independent pathways (via Munc13) are required for DAG-induced potentiation. Munc18-1 is an essential downstream target in the PKC pathway. This pathway is of general importance for presynaptic plasticity.


Trends in Neurosciences | 2007

Munc18-1 in secretion: lonely Munc joins SNARE team and takes control.

Ruud F. Toonen; Matthijs Verhage

SNARE proteins and the Sec1/Munc18 (SM) protein, Munc18-1, are essential components of the mammalian secretion machinery. Until recently, quite divergent working models existed for the central but rather isolated role of Munc18-1 in secretion and its relation to the SNAREs. New studies now solve old discrepancies, bring consensus among SM-SNARE interactions and emphasize how closely these proteins work together. Together, SM and SNARE proteins control each step in the exocytotic pathway as a team. Munc18-1 operates as the chief commander of the exocytotic SNARE team, making teamwork more efficient, working with specific team members on specific jobs, reducing promiscuity with members of noncognate teams, and adjusting team efforts as a function of recent history and environmental cues (presynaptic receptor activation).


The EMBO Journal | 2006

Dissecting docking and tethering of secretory vesicles at the target membrane

Ruud F. Toonen; Olexiy Kochubey; Heidi de Wit; Attila Gulyás-Kovács; Bas Konijnenburg; Jakob B. Sørensen; Jürgen Klingauf; Matthijs Verhage

Secretory vesicles dock at their target in preparation for fusion. Using single‐vesicle total internal reflection fluorescence microscopy in chromaffin cells, we show that most approaching vesicles dock only transiently, but that some are captured by at least two different tethering modes, weak and strong. Both vesicle delivery and tethering depend on Munc18‐1, a known docking factor. By decreasing the amount of cortical actin by Latrunculin A application, morphological docking can be restored artificially in docking‐deficient munc18‐1 null cells, but neither strong tethering nor fusion, demonstrating that morphological docking is not sufficient for secretion. Deletion of the t‐SNARE and Munc18‐1 binding partner syntaxin, but not the v‐SNARE synaptobrevin/VAMP, also reduces strong tethering and fusion. We conclude that docking vesicles either undock immediately or are captured by minimal tethering machinery and converted in a munc18‐1/syntaxin‐dependent, strongly tethered, fusion‐competent state.


PLOS ONE | 2006

Docking of Secretory Vesicles Is Syntaxin Dependent

Heidi de Wit; L. Niels Cornelisse; Ruud F. Toonen; Matthijs Verhage

Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.


Molecular Psychiatry | 2012

Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

Esther S. Lips; L.N. Cornelisse; Ruud F. Toonen; J. L. Min; Christina M. Hultman; Peter Holmans; Michael Conlon O'Donovan; Shaun Purcell; A.B. Smit; Matthijs Verhage; Patrick F. Sullivan; Peter M. Visscher; Danielle Posthuma

Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size

Ruud F. Toonen; Keimpe Wierda; Michèle S. Sons; Heidi de Wit; L. Niels Cornelisse; Arjen B. Brussaard; Jaap J. Plomp; Matthijs Verhage

Prompt recovery after intense activity is an essential feature of most mammalian synapses. Here we show that synapses with reduced expression of the presynaptic gene munc18-1 suffer from increased depression during intense stimulation at glutamatergic, GABAergic, and neuromuscular synapses. Conversely, munc18-1 overexpression makes these synapses recover faster. Concomitant changes in the readily releasable vesicle pool and its refill kinetics were found. The number of vesicles docked at the active zone and the total number of vesicles per terminal correlated with both munc18-1 expression levels and the size of the releasable vesicle pool. These data show that varying expression of a single gene controls synaptic recovery by modulating the number of docked, release-ready vesicles and thereby replenishment of the secretion capacity.


The Journal of Neuroscience | 2007

Munc18-1: Sequential Interactions with the Fusion Machinery Stimulate Vesicle Docking and Priming

Attila Gulyás-Kovács; H. de Wit; Ira Milosevic; Olexiy Kochubey; Ruud F. Toonen; Jürgen Klingauf; M. Verhage; Jakob B. Sørensen

Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 to a closed conformation of the target-SNARE syntaxin1. The controversy would be solved if binding to closed syntaxin1 were shown to be stimulatory for vesicle fusion and/or additional essential interactions were identified between Munc18-1 and the fusion machinery. Here, we provide evidence for both notions by dissecting sequential steps of the exocytotic cascade while expressing Munc18 variants in the Munc18-1 null background. In Munc18-1 null chromaffin cells, vesicle docking is abolished and syntaxin levels are reduced. A mutation that diminished Munc18 binding to syntaxin1 in vitro attenuated the vesicle-docking step but rescued vesicle priming in excess of docking. Conversely, expressing the Munc18-2 isoform, which also displays binding to closed syntaxin1, rescued vesicle docking identical with Munc18-1 but impaired more downstream vesicle priming steps. All Munc18 variants restored syntaxin1 levels at least to wild-type levels, showing that the docking phenotype is not caused by syntaxin1 reduction. None of the Munc18 variants affected vesicle fusion kinetics or fusion pore duration. In conclusion, binding of Munc18-1 to closed syntaxin1 stimulates vesicle docking and a distinct interaction mode regulates the consecutive priming step.


Journal of Neuroscience Methods | 2011

Automated analysis of neuronal morphology, synapse number and synaptic recruitment

Sabine K. Schmitz; J. J. Johannes Hjorth; Raoul M. S. Joemai; Rick Wijntjes; Susanne Eijgenraam; Petra de Bruijn; Christina Georgiou; Arthur P.H. de Jong; Arjen van Ooyen; Matthijs Verhage; L. Niels Cornelisse; Ruud F. Toonen; Wouter J. H. Veldkamp

The shape, structure and connectivity of nerve cells are important aspects of neuronal function. Genetic and epigenetic factors that alter neuronal morphology or synaptic localization of pre- and post-synaptic proteins contribute significantly to neuronal output and may underlie clinical states. To assess the impact of individual genes and disease-causing mutations on neuronal morphology, reliable methods are needed. Unfortunately, manual analysis of immuno-fluorescence images of neurons to quantify neuronal shape and synapse number, size and distribution is labor-intensive, time-consuming and subject to human bias and error. We have developed an automated image analysis routine using steerable filters and deconvolutions to automatically analyze dendrite and synapse characteristics in immuno-fluorescence images. Our approach reports dendrite morphology, synapse size and number but also synaptic vesicle density and synaptic accumulation of proteins as a function of distance from the soma as consistent as expert observers while reducing analysis time considerably. In addition, the routine can be used to detect and quantify a wide range of neuronal organelles and is capable of batch analysis of a large number of images enabling high-throughput analysis.

Collaboration


Dive into the Ruud F. Toonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi de Wit

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ka Wan Li

VU University Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge