Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruud J. Dirksen is active.

Publication


Featured researches published by Ruud J. Dirksen.


IEEE Transactions on Geoscience and Remote Sensing | 2006

Ozone monitoring instrument calibration

Marcel Dobber; Ruud J. Dirksen; Pieternel F. Levelt; G.H.J. van den Oord; Robert Voors; Quintus Kleipool; Glen Jaross; Matthew G. Kowalewski; Ernest Hilsenrath; Gilbert W. Leppelmeier; Johan de Vries; Werner Dierssen; Nico C. Rozemeijer

The Ozone Monitoring Instrument (OMI) was launched on July 15, 2004 on the National Aeronautics and Space Administrations Earth Observing System Aura satellite. The OMI instrument is an ultraviolet-visible imaging spectrograph that uses two-dimensional charge-coupled device detectors to register both the spectrum and the swath perpendicular to the flight direction with a 115/spl deg/ wide swath, which enables global daily ground coverage with high spatial resolution. This paper presents the OMI design and discusses the main performance and calibration features and results.


Journal of Geophysical Research | 2010

Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX‐B validation campaigns

Jennifer Carrie Hains; K. Folkert Boersma; M. Kroon; Ruud J. Dirksen; R. C. Cohen; Anne E. Perring; Eric John Bucsela; Hester Volten; Daan P. J. Swart; Andreas Richter; F. Wittrock; Anja Schoenhardt; Thomas Wagner; Ow Ibrahim; Michel Van Roozendael; Gaia Pinardi; James F. Gleason; J. Pepijn Veefkind; Pieternel F. Levelt

We present a sensitivity analysis of the tropospheric NO2 retrieval from the Ozone Monitoring Instrument (OMI) using measurements from the Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) and Intercontinental Chemical Transport Experiment-B (INTEX-B) campaigns held in 2006. These unique campaigns covered a wide range of pollution conditions and provided detailed information on the vertical distribution of NO2. During the DANDELIONS campaign, tropospheric NO2 profiles were measured with a lidar in a highly polluted region of the Netherlands. During the INTEX-B campaign, NO2 profiles were measured using laser-induced fluorescence onboard an aircraft in a range of meteorological and polluted conditions over the Gulf of Mexico and the east Pacific. We present a comparison of measured profiles with a priori profiles used in the OMI tropospheric NO2 retrieval algorithm. We examine how improvements in surface albedo estimates improve the OMI NO2 retrieval. From these comparisons we find that the absolute average change in tropospheric columns retrieved with measured profiles and improved surface albedos is 23% with a standard deviation of 27% and no trend in the improved being larger or smaller than the original. We show that these changes occur in case studies related to pollution in the southeastern United States and pollution outflow in the Gulf of Mexico. We also examine the effects of using improved Mexico City terrain heights on the OMI NO2 product.


Journal of Geophysical Research | 2008

Validation of Ozone Monitoring Instrument level 1b data products

Marcel Dobber; Quintus Kleipool; Ruud J. Dirksen; Pieternel F. Levelt; Glen Jaross; S. Taylor; T. Kelly; Lawrence E. Flynn; G. Leppelmeier; Nico C. Rozemeijer

[1] The validation of the collection 2 level 1b radiance and irradiance data measured with the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura satellite is investigated and described. A number of improvements from collection 2 data to collection 3 data are identified and presented. It is shown that with these improvements in the calibration and in the data processing the accuracy of the geophysically calibrated level 1b radiance and irradiance is improved in the collection 3 data. It is shown that the OMI level 1b irradiance product can be reproduced from a high-resolution solar reference spectrum convolved with the OMI spectral slit functions within 3% for the Fraunhofer structure and within 0.5% for the offset. The agreement of the OMI level 1b irradiance data product with other available literature irradiance spectra is within 4%. The viewing angle dependence of the irradiance and the irradiance goniometry are discussed, and improvements in the collection 3 data are described. The in-orbit radiometric degradation since launch is shown to be smaller than 0.5% above 310 nm and increases to about 1.2% at 270 nm. It is shown how the viewing angle dependence of the radiance is improved in the collection 3 data. The calculation of the surface albedo from OMI measurement data is discussed, and first results are presented. The OMI surface albedo values are compared to literature values from the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME). Finally, improvements in the spectral and spatial stray light corrections from collection 2 data to collection 3 data are presented and discussed.


Applied Optics | 2006

Prelaunch characterization of the Ozone Monitoring Instrument transfer function in the spectral domain

Ruud J. Dirksen; Marcel Dobber; Robert Voors; Pieternel F. Levelt

A method and an experimental measurement setup to accurately characterize the instrument transfer function in the spectral domain for hyperspectral spectrometers in the ultraviolet-visible wavelength range are described. The application to the on-ground calibration of the Ozone Monitoring Instrument (OMI) on board the Earth Observing System Aura satellite is presented and discussed. With this method and setup, based on an echelle grating, a sampling of the instrument transfer function in the spectral domain can be selected and is not limited by the spectral resolution and sampling of the spectrometer that is being characterized. The importance of accurately knowing the OMI instrument transfer functions in the spectral domain for in-flight differential optical absorption spectroscopy retrievals and wavelength calibration is discussed. The analysis of the OMI measurement data is presented and shows that the instrument transfer functions in the spectral domain as a function of wavelength and viewing angle can be determined with high accuracy.


Applied Optics | 2005

Ground-based zenith sky abundances and in situ gas cross sections for ozone and nitrogen dioxide with the Earth Observing System Aura Ozone Monitoring Instrument

Marcel Dobber; Ruud J. Dirksen; Robert Voors; George H. Mount; Pieternel F. Levelt

High-accuracy spectral-slit-function calibration measurements, in situ ambient absorption gas cell measurements for ozone and nitrogen dioxide, and ground-based zenith sky measurements with the Earth Observing System Aura Ozone Monitoring Instrument (OMI) flight instrument are reported and the results discussed. For use of high-spectral-resolution gas absorption cross sections from the literature in trace gas retrieval algorithms, accurate determination of the instruments spectral slit function is essential. Ground-based measurements of the zenith sky provide a geophysical determination of atmospheric trace gas abundances. When compared with other measurements, they can be used to verify the performance of the OMI flight instrument. We show that the approach of using published high-resolution absolute absorption cross sections convolved with accurately calibrated spectral slit functions for OMI compares well with in situ gas absorption cell measurements made with the flight instrument and that use of these convolved cross sections works well for reduction of zenith sky data taken with the OMI flight instrument for ozone and nitrogen dioxide that are retrieved from measured spectra of the zenith sky with the differential optical absorption spectroscopy technique, the same method to be used for the generation of in-flight data products. Finally, it is demonstrated that the spectral stability and signal-to-noise ratio performance of the OMI flight instrument, as determined from preflight component and full instrument tests, are sufficient to meet OMI mission objectives.


Applied Optics | 2006

Method of calibration to correct for cloud-induced wavelength shifts in the Aura satellite's Ozone Monitoring Instrument

Robert Voors; Marcel Dobber; Ruud J. Dirksen; Pieternel F. Levelt

The in-flight wavelength calibration for the Ozone Monitoring Instrument is discussed. The observed variability in the wavelength scale is two orders of magnitude larger than caused by temperature changes in the instrument. These wavelength variations are the result of rapid changes in time in the radiance levels during an individual observation in the presence of clouds or snow and ice. We have developed a data processing method to account and correct for these changes. In February 2005 this correction was implemented in the official data processing stream. We explain in detail how and how accurately this method works. Before correction, the error in the wavelength scale can be as much as a few tenths of a pixel; after correction it is mostly less than 1/100th of a pixel, which is the required preflight accuracy. This means that higher-level products such as the total column amounts of ozone, NO2, and SO2 are not significantly affected. It is expected that these wavelength variations will be observed in other hyperspectral Earth observation spectrometers and that the correction mechanism should apply equally well.


International Symposium on Optical Science and Technology | 2002

Ozone monitoring instrument (OMI)

Johan de Vries; Gijsbertus van den Oord; Ernest Hilsenrath; Maurice B.J. te Plate; Pieternel F. Levelt; Ruud J. Dirksen

The Ozone Monitoring Instrument (OMI) is an UV-Visible imaging spectrograph using two dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km). The instrument is planned for launch on NASAs EOS-AURA satellite in June 2003. Currently the OMI Flight Model is being build. This shortly follows the Instrument Development Model (DM) which was built to, next to engineering purposes, verify the instrument performance. The paper presents measured results from this DM for optical parameters such as distortion, optical efficiency, stray light and polarization sensitivity. Distortion in the spatial direction is shown to be on sub-pixel level and the stray light levels are very low and almost free from ghost peaks. The polarization sensitivity is presently demonstrated to be below 10-3 but we aim to lower the detection limit by an order of magnitude to make sure that spectral residuals do not mix with trace gas absorption spectra. Critical detector parameters are presented such as the very high UV quantum efficiency (60 % at 270 nm), dark current behavior and the sensitivity to radiation.


Journal of Geophysical Research | 2008

Ozone Monitoring Instrument geolocation verification

M. Kroon; Marcel Dobber; Ruud J. Dirksen; J. P. Veefkind; G. H. J. van den Oord; Pieternel F. Levelt

[1] Verification of the geolocation assigned to individual ground pixels as measured by the Ozone Monitoring Instrument (OMI) aboard the NASA EOS-Aura satellite was performed by comparing geophysical Earth surface details as observed in OMI false color images with the high-resolution continental outline vector map as provided by the Interactive Data Language (IDL) software tool from ITT Visual Information Solutions. The OMI false color images are generated from the OMI visible channel by integration over 20-nm-wide spectral bands of the Earth radiance intensity around 484 nm, 420 nm, and 360 nm wavelength per ground pixel. Proportional to the integrated intensity, we assign color values composed of CRT standard red, green, and blue to the OMI ground pixels. Earth surface details studied are mostly high-contrast coast lines where arid land or desert meets deep blue ocean. The IDL high-resolution vector map is based on the 1993 CIA World Database II Map with a 1-km accuracy. Our results indicate that the average OMI geolocation offset over the years 2005–2006 is 0.79 km in latitude and 0.29 km in longitude, with a standard deviation of 1.64 km in latitude and 2.04 km in longitude, respectively. Relative to the OMI nadir pixel size, one obtains mean displacements of � 6.1% in latitude and � 1.2% in longitude, with standard deviations of 12.6% and 7.9%, respectively. We conclude that the geolocation assigned to individual OMI ground pixels is sufficiently accurate to support scientific studies of atmospheric features as observed in OMI level 2 satellite data products, such as air quality issues on urban scales or volcanic eruptions and its plumes, that occur on spatial scales comparable to or smaller than OMI nadir pixels.


Remote Sensing | 2004

The on-ground calibration of the ozone monitoring instrument from a scientific point of view

Ruud J. Dirksen; Marcel Dobber; Pieternel F. Levelt; Gijsbertus van den Oord; Glen Jaross; Matthew G. Kowalewski; George H. Mount; Donald F. Heath; Ernest Hilsenrath; Johan de Vries

The Ozone Monitoring Instrument is an UV-Visible imaging spectrograph using two-dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km2). The instrument is planned for launch on NASA’s EOS-AURA satellite in January 2004. The on-ground calibration measurement campaign of the instrument was performed May-October 2002, data is still being analyzed to produce the calibration key data set. The paper highlights selected topics from the calibration campaign, the radiometric calibration, spectral calibration including a new method to accurately calibrate the spectral slitfunction and results from the zenith sky measurements and gas cell measurements that were performed with the instrument.


International Conference on Space Optics 2004 | 2017

Ozone monitoring instrument flight-model on-ground and inflight calibration

Pieternel F. Levelt; Gijsbertus van den Oord; Marcel Dobber; Ruud J. Dirksen; Glen Jaross; Matt Kowalewski; George H. Mount; Donald F. Heath; Ernest Hilsenrath; Richard P. Cebula

The Ozone Monitoring Instrument (OMI) is an ultravioletvisible imaging spectrograph that uses two-dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a 114 degrees wide swath combined with an unprecedented small ground pixel (nominally 13 x 24 km2), which in turn enables global daily ground coverage with high spatial resolution. The OMI instrument is part of NASA’s EOSAURA satellite, which will be launched in the second half of 2004. The on-ground calibration of the instrument was performed in 2002. This paper presents and discusses results for a number of selected topics from the on-ground calibration: the radiometric calibration, the spectral calibration and spectral slit function calibration. A new method for accurately calibrating spectral slit functions, based on an echelle grating optical stimulus, is discussed. The in-flight calibration and trend monitoring approach and facilities are discussed.

Collaboration


Dive into the Ruud J. Dirksen's collaboration.

Top Co-Authors

Avatar

Marcel Dobber

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Pieternel F. Levelt

Royal Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Robert Voors

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Pieternel F. Levelt

Royal Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Glen Jaross

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Gijsbertus van den Oord

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Quintus Kleipool

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

George H. Mount

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Folkert Boersma

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Henk Eskes

Royal Netherlands Meteorological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge