Ruxandra Covacu
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruxandra Covacu.
Journal of Leukocyte Biology | 2008
Åsa Andersson; Ruxandra Covacu; Dan Sunnemark; Alexandre I. Danilov; Assunta Dal Bianco; Mohsen Khademi; Erik Wallström; Anna Lobell; Lou Brundin; Hans Lassmann; Robert A. Harris
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the CNS, most frequently starting with a series of bouts, each followed by complete remission and then a secondary, progressive phase during which the neurological deficit increases steadily. The underlying molecular mechanisms responsible for disease progression are still unclear. Herein, we demonstrate that high mobility group box chromosomal protein 1 (HMGB1), a DNA‐binding protein with proinflammatory properties, is evident in active lesions of MS and experimental autoimmune encephalomyelitis (EAE) and that HMGB1 levels correlate with active inflammation. Furthermore, the expression of the innate HMGB1 receptors—receptor for advanced glycation end products, TLR2, and TLR4—was also highly increased in MS and rodent EAE. Additionally, in vitro activation of rodent CNS‐derived microglia and bone marrow‐derived macrophages demonstrated that microglia were equally as capable as macrophages of translocating HMGB1 following LPS/IFN‐γ stimulation. Significant expression of HMGB1 and its receptors on accumulating activated macrophages and resident microglia may thus provide a positive feedback loop that amplifies the inflammatory response during MS and EAE pathogenesis.
European Journal of Neuroscience | 2006
Alexandre I. Danilov; Ruxandra Covacu; Morten C. Moe; Iver A. Langmoen; Clas B. Johansson; Tomas Olsson; Lou Brundin
Multiple sclerosis is an inflammatory disease of the central nervous system characterized by inflammation, demyelination, axonal degeneration and accumulation of neurological disability. Previously, we demonstrated that stem cells constitute a possible endogenous source for remyelination. We now addressed the question of whether neurogenesis can occur in neuroinflammatory lesions. We demonstrated that, in experimental autoimmune encephalomyelitis, induced in rats 1,1′‐dioctadecyl‐6,6′‐di(4sulphopentyl)‐3,3,3′,3′tetramethylindocarbocyanin(DiI)‐labelled ependymal cells not only proliferated but descendants migrated to the area of neuroinflammation and differentiated into cells expressing the neuronal markers β‐III‐tubulin and NeuN. Furthermore, these cells were immunoreactive for bromodeoxyuridine and PCNA, markers for cells undergoing cell proliferation. Using the whole‐cell patch‐clamp technique on freshly isolated 1, DiI‐labelled cells from spinal cord lesions we demonstrated the ability of these cells to fire overshooting action potentials similar to those of immature neurones. We thus provide the first evidence for the initiation of neurogenesis in neuroinflammatory lesions in the adult spinal cord.
Journal of Immunology | 2009
Ruxandra Covacu; Lisa Arvidsson; Åsa Andersson; Mohsen Khademi; Helena Erlandsson-Harris; Robert A. Harris; Mikael Svensson; Tomas Olsson; Lou Brundin
Adult neural stem cells (NSCs) are believed to facilitate CNS repair and tissue regeneration. However, it is not yet clear how these cells are influenced when the cellular environment is modified during neurotrauma or neuroinflammatory conditions. In this study, we determine how different proinflammatory cytokines modulate the expression of TLR2 and TLR4 in NSCs and how these cells respond to TLR2 and TLR4 agonists. Primary cultures of neural stem/progenitor cells isolated from the subventricular zone of brains from adult Dark Agouti rats were exposed to 1) supernatants from activated macrophages; 2) proinflammatory cytokines IFN-γ, TNF-α, or both; and 3) agonists for TLR2 and TLR4. Both TLR2 and TLR4 were expressed during basal conditions and their mRNA levels were further increased following cytokine exposure. TLR4 was up-regulated by IFN-γ and this effect was reversed by TNF-α. TLR2 expression was increased by supernatants from activated macrophages and by TNF-α, which synergized with IFN-γ. TLR agonists induced the expression of TNF-α mRNA. Importantly, TNF-α could be translated into protein and released into the supernatants where it was quantified by cytokine ELISA. In conclusion, we demonstrate that NSCs constitutively express TLR2 and TLR4 and that their expression is increased as a consequence of exposure to proinflammatory mediators. Additionally, activation of these receptors can induce production of proinflammatory cytokines. These findings suggest that NSCs may be primed to participate in cytokine production during neuroinflammatory or traumatic conditions.
Stem Cells | 2006
Ruxandra Covacu; Alexandre I. Danilov; Bo Sonnich Rasmussen; Katarina Hallén; Morten C. Moe; Anna Lobell; Clas B. Johansson; Mikael Svensson; Tomas Olsson; Lou Brundin
Regeneration of cells in the central nervous system is a process that might be affected during neurological disease and trauma. Because nitric oxide (NO) and its derivatives are powerful mediators in the inflammatory cascade, we have investigated the effects of pathophysiological concentrations of NO on neurogenesis, gliogenesis, and the expression of proneural genes in primary adult neural stem cell cultures. After exposure to NO, neurogenesis was downregulated, and this corresponded to decreased expression of the proneural gene neurogenin‐2 and β‐III‐tubulin. The decreased ability to generate neurons was also found to be transmitted to the progeny of the cells. NO exposure was instead beneficial for astroglial differentiation, which was confirmed by increased activation of the Janus tyrosine kinase/signal transducer and activator of transcription transduction pathway. Our findings reveal a new role for NO during neuroinflammatory conditions, whereby its proastroglial fate‐determining effect on neural stem cells might directly influence the neuroregenerative process.
PLOS ONE | 2012
Milena Z. Adzemovic; Johan Öckinger; Manuel Zeitelhofer; Sonja Hochmeister; Amennai Daniel Beyeen; Atul Paulson; Alan Gillett; Melanie Thessen Hedreul; Ruxandra Covacu; Hans Lassmann; Tomas Olsson; Maja Jagodic
Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin+ blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation.
Experimental Cell Research | 2008
Alexander Espinosa; Vilija Oke; Åse Elfving; Filippa Nyberg; Ruxandra Covacu; Marie Wahren-Herlenius
Patients with the systemic autoimmune diseases Sjögrenss syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus. Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus.
Stem Cells | 2014
Maria Bergsland; Ruxandra Covacu; Cynthia Perez Estrada; Mikael Svensson; Lou Brundin
Degeneration of central nervous system tissue commonly occurs during neuroinflammatory conditions, such as multiple sclerosis and neurotrauma. During such conditions, neural stem/progenitor cell (NPC) populations have been suggested to provide new cells to degenerated areas. In the normal brain, NPCs from the subventricular zone generate neurons that settle in the olfactory bulb or striatum. However, during neuroinflammatory conditions NPCs migrate toward the site of injury to form oligodendrocytes and astrocytes, whereas newly formed neurons are less abundant. Thus, the specific NPC lineage fate decisions appear to respond to signals from the local environment. The instructive signals from inflammation have been suggested to rely on excessive levels of the free radical nitric oxide (NO), which is an essential component of the innate immune response, as NO promotes neuronal to glial cell fate conversion of differentiating rat NPCs in vitro. Here, we demonstrate that the NO‐induced neuronal to glial fate conversion is dependent on the transcription factor neuron‐restrictive silencing factor‐1 (NRSF)/repressor element‐1 silencing transcription (REST). Chromatin modification status of a number of neuronal and glial lineage restricted genes was altered upon NO‐exposure. These changes coincided with gene expression alterations, demonstrating a global shift toward glial potential. Interestingly, by blocking the function of NRSF/REST, alterations in chromatin modifications were lost and the NO‐induced neuronal to glial switch was suppressed. This implicates NRSF/REST as a key factor in the NPC‐specific response to innate immunity and suggests a novel mechanism by which signaling from inflamed tissue promotes the formation of glial cells. Stem Cells 2014;32:2539–2549
The Neuroscientist | 2017
Ruxandra Covacu; Lou Brundin
Neural stem/progenitor cells (NSCs/NPCs) are present in different locations in the central nervous system. In the subgranular zone (SGZ) there is a constant generation of new neurons under normal conditions. New neurons are also formed from the subventricular zone (SVZ) NSCs, and they migrate anteriorly as neuroblast to the olfactory bulb in rodents, whereas in humans migration is directed toward striatum. Most CNS injuries elicit proliferation and migration of the NSCs toward the injury site, indicating the activation of a regenerative response. However, regeneration from NSC is incomplete, and this could be due to detrimental cues encountered during inflammation. Different CNS diseases and trauma cause activation of the innate and adaptive immune responses that influence the NSCs. Furthermore, NSCs in the brain react differently to inflammatory cues than their counterparts in the spinal cord. In this review, we have summarized the effects of inflammation on NSCs in relation to their origin and briefly described the NSC activity during different neurological diseases or experimental models.
The Journal of Neuroscience | 2014
Ruxandra Covacu; Perez Estrada C; Lisa Arvidsson; Mikael Svensson; Lou Brundin
Neural progenitor cells (NPCs) have regenerative capabilities that are activated during inflammation. We aimed at elucidating how NPCs, with special focus on the spinal cord-derived NPCs (SC-NPCs), are affected by chronic inflammation modeled by experimental autoimmune encephalomyelitis (EAE). NPCs derived from the subventricular zone (SVZ-NPCs) were also included in the study as a reference from a distant inflammatory site. We also investigated the transcriptional and functional difference between the SC-NPCs and SVZ-NPCs during homeostatic conditions. NPCs were isolated and propagated from the SVZ and cervical, thoracic, and caudal regions of the SC from naive rats and rats subjected to EAE. Using Affymetrix microarray analyses, the global transcriptome was measured in the different NPC populations. These analyses were paralleled by NPC differentiation studies. Assessment of basal transcriptional and functional differences between NPC populations in naive rat revealed a higher neurogenic potential in SVZ-NPCs compared with SC-NPCs. Conversely, during EAE, the neurogenicity of the SC-NPCs was increased while their gliogenicity was decreased. We detected an overall increase of inflammation and neurodegeneration-related genes while the developmentally related profile was decreased. Among the decreased functions, we isolated a gliogenic signature that was confirmed by differentiation assays where the SC-NPCs from EAE generated fewer oligodendrocytes and astrocytes but more neurons than control cultures. In summary, NPCs displayed differences in fate-regulating genes and differentiation potential depending on their rostrocaudal origin. Inflammatory conditions downregulated gliogenicity in SC-NPCs, promoting neurogenicity. These findings give important insight into neuroinflammatory diseases and the mechanisms influencing NPC plasticity during these conditions.
Journal of Neuroimmunology | 2015
Lisa Arvidsson; Ruxandra Covacu; Cynthia Perez Estrada; Sreenivasa Raghavan Sankavaram; Mikael Svensson; Lou Brundin
Studies in multiple sclerosis have demonstrated that normal-appearing white matter can harbor pathological changes. Here we investigated the effects of neuroinflammation, modeled by experimental autoimmune encephalomyelitis (EAE) on neural stem/progenitor cells (NPCs) located distally to inflammatory foci. We observed that EAE-derived NPCs had a lower capacity to differentiate into oligodendrocytes and an increased neuronal differentiation than control NPCs. This finding was corroborated with changes in gene expression of early differentiation genes. We conclude that inflammation has a long range effect on the NPCs in the diseased central nervous system, reaching NPC populations outside the lesion sites.