Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan A. Martin is active.

Publication


Featured researches published by Ryan A. Martin.


Science | 2017

Precipitation drives global variation in natural selection

Adam M. Siepielski; Michael B. Morrissey; Mathieu Buoro; Stephanie M. Carlson; Christina M. Caruso; Sonya M. Clegg; Tim Coulson; Joseph D. DiBattista; Kiyoko M. Gotanda; Clinton D. Francis; Joe Hereford; Joel G. Kingsolver; Kate E. Augustine; Loeske E. B. Kruuk; Ryan A. Martin; Ben C. Sheldon; Nina Sletvold; Erik I. Svensson; Michael J. Wade; Andrew D. C. MacColl

Climate-driven selection Climate change will fundamentally alter many aspects of the natural world. To understand how species may adapt to this change, we must understand which aspects of the changing climate exert the most powerful selective forces. Siepielski et al. looked at studies of selection across species and regions and found that, across biomes, the strongest sources of selection were precipitation and transpiration changes. Importantly, local and regional climate change explained patterns of selection much more than did global change. Science, this issue p. 959 Local and regional climate changes in rainfall explain patterns of species selection across biomes more than global change. Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation—natural selection—are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale.


Evolution | 2014

EVOLUTION OF MALE COLORATION DURING A POST‐PLEISTOCENE RADIATION OF BAHAMAS MOSQUITOFISH (GAMBUSIA HUBBSI)

Ryan A. Martin; Rüdiger Riesch; Justa L. Heinen-Kay; R. Brian Langerhans

Sexual signal evolution can be complex because multiple factors influence the production, transmission, and reception of sexual signals, as well as receivers’ responses to them. To grasp the relative importance of these factors in generating signal diversity, we must simultaneously investigate multiple selective agents and signaling traits within a natural system. We use the model system of the radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to test the effects of resource availability, male body size and other life‐history traits, key aspects of the transmission environment, sex ratio, and predation risk on variation in multiple male color traits. Consistent with previous work examining other traits in this system, several color traits have repeatedly diverged between predation regimes, exhibiting greater elaboration in the absence of predators. However, other factors proved influential as well, with variation in resource levels, body size, relative testes size, and background water color being especially important for several color traits. For one prominent signaling trait, orange dorsal fins, we further confirmed a genetic basis underlying population differences using a laboratory common‐garden experiment. We illustrate a promising approach for gaining a detailed understanding of the many contributing factors in the evolution of multivariate sexual signals.


Evolutionary Ecology | 2013

Environmental drivers of demographics, habitat use, and behavior during a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi)

Justa L. Heinen; Matthew W. Coco; Maurice S. Marcuard; Danielle N. White; M. Nils Peterson; Ryan A. Martin; R. Brian Langerhans

A fundamental goal of evolutionary ecology is to understand the environmental drivers of ecological divergence during the early stages of adaptive diversification. Using the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes, we used a comparative field study to examine variation in density, age structure, tertiary (adult) sex ratio, habitat use, as well as adult feeding and social behaviors in relation to environmental features including predation risk, interspecific competition, productivity (e.g. chlorophyll a, zooplankton density), and abiotic factors (e.g. salinity, surface diameter). The primary environmental factor associated with ecological differentiation in G. hubbsi was the presence of piscivorous fish. Gambusia hubbsi populations coexisting with predatory fish were less dense, comprised of a smaller proportion of juveniles, and were more concentrated in shallow, near-shore regions of blue holes. In addition to predation risk, the presence of a competitor fish species was associated with G. hubbsi habitat use, and productivity covaried with both age structure and habitat use. Feeding and social behaviors differed considerably between sexes, and both sexes showed behavioral differences between predator regimes by exhibiting more foraging behaviors in the absence of predators and more sexual behaviors in their presence. Males additionally exhibited more aggressive behaviors toward females in the absence of predators, but were more aggressive toward other males in the presence of predators. These results largely matched a priori predictions, and several findings are similar to trends in other related systems. Variation in predation risk appears to represent the primary driver of ecological differentiation in this system, but other previously underappreciated factors (interspecific competition, resource availability) are notable contributors as well. This study highlights the utility of simultaneously evaluating multiple environmental factors and multiple population characteristics within a natural system to pinpoint environmental drivers of ecological differentiation.


F1000Research | 2016

The interplay between plasticity and evolution in response to human-induced environmental change.

Sarah E. Diamond; Ryan A. Martin

Some populations will cope with human-induced environmental change, and others will undergo extirpation; understanding the mechanisms that underlie these responses is key to forecasting responses to environmental change. In cases where organisms cannot disperse to track suitable habitats, plastic and evolved responses to environmental change will determine whether populations persist or perish. However, the majority of studies consider plasticity and evolution in isolation when in fact plasticity can shape evolution and plasticity itself can evolve. In particular, whether cryptic genetic variation exposed by environmental novelty can facilitate adaptive evolution has been a source of controversy and debate in the literature and has received even less attention in the context of human-induced environmental change. However, given that many studies indicate organisms will be unable to keep pace with environmental change, we need to understand how often and the degree to which plasticity can facilitate adaptive evolutionary change under novel environmental conditions.


Ecology Letters | 2016

The predictability and magnitude of life-history divergence to ecological agents of selection: a meta-analysis in livebearing fishes.

Michael P. Moore; Rüdiger Riesch; Ryan A. Martin

Environments causing variation in age-specific mortality - ecological agents of selection - mediate the evolution of reproductive life-history traits. However, the relative magnitude of life-history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade-off between these traits using a meta-analysis in livebearing fishes (Poeciliidae). Life-history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring-number and offspring-size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life-history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.


Journal of Evolutionary Biology | 2016

Intrasexual selection favours an immune-correlated colour ornament in a dragonfly.

Michael P. Moore; Ryan A. Martin

Sexual signalling is predicted to shape the evolution of sex‐specific ornamentation, and establishing the costs and benefits of ornamentation and the information that ornamentation provides to receivers is necessary to evaluating this adaptive function. Here, we assessed the adaptive function of a common colour ornament in insects, melanin wing ornamentation, using the dragonfly Pachydiplax longipennis. We hypothesized that greater ornamentation would improve territory‐holding success by decreasing aggression that males receive from territorial rivals, but that more ornamented males may have shorter lifespans. Using mark–recapture field observations, we found that more ornamented males had greater territory‐holding success and that viability selection did not act on wing melanization. We then compared the aggression of territorial rivals to decoy males before and after experimentally augmenting wing melanization, finding that males significantly reduced aggression following the manipulation. We next hypothesized that wing melanization would signal fighting ability to territorial rivals by reflecting condition via investment in the costly melanin synthesis pathway. We observed a positive relationship between ornamentation and the likelihood of winning territorial disputes, suggesting that wing melanization provides information about fighting ability to rivals. We also found a positive relationship between melanin‐based immune defence and ornamentation, supporting a link between the signal and condition. We conclude that wing melanization is a condition‐related signal of fighting ability and suggest that this may be a common mechanism promoting the evolution of melanin ornamentation.


Journal of Evolutionary Biology | 2016

The pay-offs of maternal care increase as offspring develop, favouring extended provisioning in an egg-feeding frog.

Matthew B. Dugas; Michael P. Moore; Ryan A. Martin; Sprehn Cg

Offspring quantity and quality are components of parental fitness that cannot be maximized simultaneously. When the benefits of investing in offspring quality decline, parents are expected to shift investment towards offspring quantity (other reproductive opportunities). Even when mothers retain complete control of resource allocation, offspring control whether to allocate investment to growth or development towards independence, and this shared control may generate parent–offspring conflict over the duration of care. We examined these predictions by, in a captive colony, experimentally removing tadpoles of the strawberry poison frog (Oophaga pumilio) from the mothers that provision them with trophic eggs throughout development. Tadpoles removed from their mothers were no less likely to survive to nutritional independence (i.e. through metamorphosis) than were those that remained with their mothers, but these offspring were smaller at metamorphosis and were less likely to survive to reach adult size, even though they were fed ad libitum. Tadpoles that remained with their mothers developed more slowly than those not receiving care, a pattern that might suggest that offspring extracted more care than was in mothers’ best interests. However, the fitness returns of providing care increased with offspring development, suggesting that mothers would be best off continuing care until tadpoles initiated metamorphosis. Although the benefits of parental investment in offspring quality are often thought to asymptote at high levels, driving parent–offspring conflict over weaning, this assumption may not hold over natural ranges of investment, with selection on both parents and offspring favouring extended durations of parental care.


Proceedings of the Royal Society B: Biological Sciences | 2018

Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities

Sarah E. Diamond; Lacy D. Chick; Abe Perez; Stephanie A. Strickler; Ryan A. Martin

The question of parallel evolution—what causes it, and how common it is—has long captured the interest of evolutionary biologists. Widespread urban development over the last century has driven rapid evolutionary responses on contemporary time scales, presenting a unique opportunity to test the predictability and parallelism of evolutionary change. Here we examine urban evolution in an acorn-dwelling ant species, focusing on the urban heat island signal and the ants tolerance of these altered urban temperature regimes. Using a common-garden experimental design with acorn ant colonies collected from urban and rural populations in three cities and reared under five temperature treatments in the laboratory, we assessed plastic and evolutionary shifts in the heat and cold tolerance of F1 offspring worker ants. In two of three cities, we found evolved losses of cold tolerance, and compression of thermal tolerance breadth. Results for heat tolerance were more complex: in one city, we found evidence of simple evolved shifts in heat tolerance in urban populations, though in another, the difference in urban and rural population heat tolerance depended on laboratory rearing temperature, and only became weakly apparent at the warmest rearing temperatures. The shifts in tolerance appeared to be adaptive, as our analysis of the fitness consequences of warming revealed that while urban populations produced more sexual reproductives under warmer laboratory rearing temperatures, rural populations produced fewer. Patterns of natural selection on thermal tolerances supported our findings of fitness trade-offs and local adaptation across urban and rural acorn ant populations, as selection on thermal tolerance acted in opposite directions between the warmest and coldest rearing temperatures. Our study provides mixed support for parallel evolution of thermal tolerance under urban temperature rise, and, importantly, suggests the promising use of cities to examine parallel and non-parallel evolution on contemporary time scales.


Naturwissenschaften | 2015

An experimental test for age-related improvements in reproductive performance in a frog that cares for its young

Matthew B. Dugas; Michael P. Moore; Caitlin N. Wamelink; Ryan A. Martin

Reproductive performance often increases with age in long-lived iteroparous organisms, a pattern that can result from within-individual increases in effort and/or competence. In free-living populations, it is typically difficult to distinguish these mechanisms or to isolate particular features of reproduction-influencing outcomes. In captive Oophaga pumilio, a frog in which mothers provide extended offspring provisioning via trophic eggs, we experimentally manipulated the age at which females started breeding and then monitored them across repeated reproductive events. This experiment allowed us to decouple age and experience and isolate maternal care as the proximate source of any differences in performance. Younger first-time mothers produced larger broods than older first-time mothers, but did not rear more offspring to independence. Across repeated reproductive events, maternal age was unassociated with any metric of performance. At later reproductive events, however, mothers produced fewer metamorphs, and a lower proportion of individuals in their broods reached independence. These patterns suggest that performance does not improve with age or breeding experience in this frog, and that eventual declines in performance are driven by reproductive activity, not age per se. Broadly, age-specific patterns of reproductive performance may depend on the proximate mechanism by which parents influence offspring fitness and how sensitive these are to effort and competence.


Fems Microbiology Letters | 2017

Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla)

Katherine L. Krynak; David Burke; Ryan A. Martin; Patricia M. Dennis

ABSTRACT Cardiac disease is a leading cause of mortality in zoo‐housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo‐housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo‐housed populations of this endangered species.

Collaboration


Dive into the Ryan A. Martin's collaboration.

Top Co-Authors

Avatar

Michael P. Moore

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Diamond

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Brian Langerhans

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Abe Perez

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew B. Dugas

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Stephanie A. Strickler

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge