Ryan Boyles
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan Boyles.
Environment International | 2003
Ryan Boyles; Sethu Raman
North Carolina has one of the most complex climates in the United States (U.S.). Analysis of the climate in this state is critical for agricultural and planning purposes. Climate patterns and trends in North Carolina are analyzed for the period 1949-1998. Precipitation, minimum temperature, and maximum temperature are analyzed on seasonal and annual time scales using data collected from the National Weather Service Cooperative Observer Network. Additionally, changes in patterns of occurrence of the last spring freeze and first fall freeze are investigated. Linear time series slopes are analyzed to investigate the spatial and temporal trends of climate variability in North Carolina. Spatial analysis of climate variability across North Carolina is performed using a geographic information system. While most trends are local in nature, there are general statewide patterns. Precipitation in North Carolina has increased over the past 50 years during the fall and winter seasons, but decreased during the summer. Temperatures during the last 10 years are warmer than average, but are not warmer than those experienced during the 1950s. The warm season has become longer, as measured by the dates of the last spring freeze and first fall freeze. Generally, the last 10 years were the wettest of the study period. These conclusions are consistent with earlier studies that show that the difference between the maximum and minimum temperatures is decreasing, possibly due to increased cloud cover and precipitation. Similarly, these results show that temperature patterns are in phase with the North Atlantic Oscillation and precipitation patterns appear to be correlated with the Pacific Decadal Oscillation.
Journal of Climate | 2012
Vasubandhu Misra; J.-P. Michael; Ryan Boyles; Eric P. Chassignet; Melissa Griffin; James J. O’Brien
AbstractThis study attempts to explain the considerable spatial heterogeneity in the observed linear trends of monthly mean maximum and minimum temperatures (Tmax and Tmin) from station observations in the southeastern (SE) United States (specifically Florida, Alabama, Georgia, South Carolina, and North Carolina). In a majority of these station sites, the warming trends in Tmin are stronger in urban areas relative to rural areas. The linear trends of Tmin in urban areas of the SE United States are approximately 7°F century−1 compared to about 5.5°F century−1 in rural areas. The trends in Tmax show weaker warming (or stronger cooling) trends with irrigation, while trends in Tmin show stronger warming trends. This functionality of the temperature trends with land features also shows seasonality, with the boreal summer season showing the most consistent relationship in the trends of both Tmax and Tmin. This study reveals that linear trends in Tmax in the boreal summer season show a cooling trend of about 0.5...
Journal of Atmospheric and Oceanic Technology | 2012
Weinan Pan; Ryan Boyles; Jeffrey G. White; J. L. Heitman
AbstractSoil moisture has important implications for meteorology, climatology, hydrology, and agriculture. This has led to growing interest in development of in situ soil moisture monitoring networks. Measurement interpretation is severely limited without soil property data. In North Carolina, soil moisture has been monitored since 1999 as a routine parameter in the statewide Environment and Climate Observing Network (ECONet), but with little soils information available for ECONet sites. The objective of this paper is to provide soils data for ECONet development. The authors studied soil physical properties at 27 ECONet sites and generated a database with 13 soil physical parameters, including sand, silt, and clay contents; bulk density; total porosity; saturated hydraulic conductivity; air-dried water content; and water retention at six pressures. Soil properties were highly variable among individual ECONet sites [coefficients of variation (CVs) ranging from 12% to 80%]. This wide range of properties sug...
Monthly Weather Review | 2006
Peter P. Childs; Aneela Qureshi; Sethu Raman; Kiran Alapaty; Robb Ellis; Ryan Boyles; Dev Niyogi
Abstract The Flux-Adjusting Surface Data Assimilation System (FASDAS) uses the surface observational analysis to directly assimilate surface layer temperature and water vapor mixing ratio and to indirectly assimilate soil moisture and soil temperature in numerical model predictions. Both soil moisture and soil temperature are important variables in the development of deep convection. In this study, FASDAS coupled within the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) was used to study convective initiation over the International H2O Project (IHOP_2002) region, utilizing the analyzed surface observations collected during IHOP_2002. Two 72-h numerical simulations were performed. A control simulation was run that assimilated all available IHOP_2002 measurements into the standard MM5 four-dimensional data assimilation. An experimental simulation was also performed that assimilated all available IHOP_2002 measurements into the FASDAS version of the MM5, where surface observations ...
Bulletin of the American Meteorological Society | 2006
Christopher Thomas Holder; Ryan Boyles; Peter Robinson; Sethu Raman; Greg Fishel
Normal temperatures, which are calculated by the National Climatic Data Center for locations across the country, are quality-controlled, smoothed 30-yr-average temperatures. They are used in many facets of media, industry, and meteorology, and a given days normal maximum and minimum temperatures are often used synonymously with what the observed temperature extremes “should be.” However, allowing some leeway to account for natural daily and seasonal variations can more accurately reflect the ranges of temperature that we can expect on a particular day—a “normal range.” Providing such a range, especially to the public, presents a more accurate perspective on what the temperature “usually” is on any particular day of the year. One way of doing this is presented in this study for several locations across North Carolina. The results yield expected higher variances in the cooler months and seem to well represent the varied weather that locations in North Carolina tend to experience. Day-to-day variations in t...
Journal of Applied Meteorology and Climatology | 2016
Adrienne Wootten; Jared H. Bowden; Ryan Boyles; Adam Terando
AbstractThe sensitivity of the precipitation over Puerto Rico that is simulated by the Weather Research and Forecasting (WRF) Model is evaluated using multiple combinations of cumulus parameterization (CP) schemes and interior grid nudging. The NCEP–DOE AMIP-II reanalysis (R-2) is downscaled to 2-km horizontal grid spacing both with convective-permitting simulations (CP active only in the middle and outer domains) and with CP schemes active in all domains. The results generally show lower simulated precipitation amounts than are observed, regardless of WRF configuration, but activating the CP schemes in the inner domain improves the annual cycle, intensity, and placement of rainfall relative to the convective-permitting simulations. Furthermore, the use of interior-grid-nudging techniques in the outer domains improves the placement and intensity of rainfall in the inner domain. Incorporating a CP scheme at convective-permitting scales ( 4 km) im...
Journal of Applied Meteorology and Climatology | 2014
Adrienne Wootten; Ryan Boyles
AbstractGauge-calibrated radar estimates of daily precipitation are compared with daily observed values of precipitation from National Weather Service (NWS) Cooperative Observer Network (COOP) stations to evaluate the multisensor precipitation estimate (MPE) product that is gridded by the National Centers for Environmental Prediction (NCEP) for the eastern United States (defined as locations east of the Mississippi River). This study focuses on a broad evaluation of MPE across the study domain by season and intensity. In addition, the aspect of precipitation type is considered through case studies of winter and summer precipitation events across the domain. Results of this study indicate a north–south gradient in the error of MPE and a seasonal pattern with the highest error in summer and autumn and the lowest error in winter. Two case studies of precipitation are also considered in this study. These case studies include instances of intense precipitation and frozen precipitation. These results suggest th...
Marine Geodesy | 2010
Jennifer Kehoe; Sethu Raman; Ryan Boyles
Trends in the Atlantic tropical cyclones and the cyclones that had tracks through North Carolina were analyzed for more than 100 years. From about 1970, there appears to be an increase in the mean number of storms developing. The number of storms affecting North Carolina each decade has been increasing since the 1960s. In the 1980s, 1990s, and into the 2000s, there was an increase in the number of landfalling storms in North Carolina. Although August and September are the most active months of the Atlantic hurricane season, the hurricane season for North Carolina peaks in September. Wind distribution and frictional convergence associated with landfalling hurricanes in North Carolina are discussed. Convection and precipitation patterns of landfalling hurricanes are presented. Two examples of the effect of spatial surface moisture distribution on intensification of tropical cyclones over land after landfall are discussed.
Agricultural Finance Review | 2013
Keith H. Coble; Thomas O. Knight; Mary Frances Miller; Barry J. Goodwin; Roderick M. Rejesus; Ryan Boyles
Purpose - The purpose of this research is to investigate the degree to which trends and structural change may have altered crop insurance expected loss cost ratios across time. Because loss experience is used to set rates for the program, these changes can impact the premiums paid by producers and cost to the government. Design/methodology/approach - County level adjusted loss cost data was merged with climate division weather data for the 1980-2009 period. Crop-specific regional-level regression models were estimated to test for trends and structural changes in the loss experience for major crops (corn, soybeans, sorghum, cotton, winter wheat, and spring wheat). Climate data was used to control for the effect of weather. Findings - For several crops and regions, a significant break point in the loss cost data is found at 1995. This is consistent with the policy changes that occurred in in the program due to the 1994 legislative change. In most instances loss experience prior to 1995 is higher than more recent years even when controlling for the effect of weather. The exception is in winter wheat where it appears recent experience may be worse rather than older experience. Originality/value - This paper provides a large-scale assessment of the magnitude of improved crop insurance loss experience across time.
Climatic Change | 2018
Amit Bhardwaj; Vasubandhu Misra; Akhilesh Mishra; Adrienne Wootten; Ryan Boyles; Jared H. Bowden; Adam Terando
We present results from 20-year “high-resolution” regional climate model simulations of precipitation change for the sub-tropical island of Puerto Rico. The Japanese Meteorological Agency Non-Hydrostatic Model (NHM) operating at a 2-km grid resolution is nested inside the Regional Spectral Model (RSM) at 10-km grid resolution, which in turn is forced at the lateral boundaries by the Community Climate System Model (CCSM4). At this resolution, the climate change experiment allows for deep convection in model integrations, which is an important consideration for sub-tropical regions in general, and on islands with steep precipitation gradients in particular that strongly influence local ecological processes and the provision of ecosystem services. Projected precipitation change for this region of the Caribbean is simulated for the mid-twenty-first century (2041–2060) under the RCP8.5 climate-forcing scenario relative to the late twentieth century (1986–2005). The results show that by the mid-twenty-first century, there is an overall rainfall reduction over the island for all seasons compared to the recent climate but with diminished mid-summer drought (MSD) in the northwestern parts of the island. Importantly, extreme rainfall events on sub-daily and daily time scales also become slightly less frequent in the projected mid-twenty-first-century climate over most regions of the island.