Sethu Raman
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sethu Raman.
Monthly Weather Review | 2000
Xiaodong Hong; Simon W. Chang; Sethu Raman; Lynn K. Shay; Richard M. Hodur
Abstract Hurricane Opal (1995) experienced a rapid, unexpected intensification in the Gulf of Mexico that coincided with its encounter with a warm core ring (WCR). The relative positions of Opal and the WCR and the timing of the intensification indicate strong air–sea interactions between the tropical cyclone and the ocean. To study the mutual response of Opal and the Gulf of Mexico, a coupled model is used consisting of a nonhydrostatic atmospheric component of the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), and the hydrostatic Geophysical Fluid Dynamics Laboratory’s Modular Ocean Model version 2 (MOM 2). The coupling between the ocean and the atmosphere components of the model are accomplished by conservation of heat, salt, momentum, as well as the sensible and latent heat fluxes at the air–sea interface. The atmospheric model has two nests with spatial resolutions of 0.6° and 0.2°. The ocean model has a uniform resolution of 0.2°. The oceanic model domain ...
Journal of Geophysical Research | 1996
Jeral G. Estupiñán; Sethu Raman; Gennaro H. Crescenti; John J. Streicher; William F. Barnard
An experiment was conducted over a 6-month period in Research Triangle Park, North Carolina, to investigate the effects of clouds and haze on ultraviolet (UV) radiation. Data were collected using a Yankee Environmental Systems UVB-1 pyranometer, an Eppley Laboratory Precision Spectral Pyranometer, and a SCI-TEC Brewer spectrophotometer. Hourly reports of total cloud cover and surface observations of air temperature, dew point temperature, barometric pressure, and visibility from the National Weather Service located at the nearby Raleigh-Durham International Airport were also used in this study. An empirical relationship has been formulated for UV-B attenuation as a function of total solar transmissivity and cloud cover. Cumulus-type clouds were found to attenuate up to 99% of the incoming UV-B radiation during overcast conditions. However, these same clouds were found to produce localized increases of UV-B radiation of up to 27% over timescales less than 1 hour under partly cloudy skies when the direct solar beam was unobstructed. Summer haze was found to attenuate UV-B radiation in the range of 5% to 23% when compared to a clear day in the autumn. In general, total radiation was attenuated more than UV-B radiation under cloudy conditions.
Environment International | 2003
Ryan Boyles; Sethu Raman
North Carolina has one of the most complex climates in the United States (U.S.). Analysis of the climate in this state is critical for agricultural and planning purposes. Climate patterns and trends in North Carolina are analyzed for the period 1949-1998. Precipitation, minimum temperature, and maximum temperature are analyzed on seasonal and annual time scales using data collected from the National Weather Service Cooperative Observer Network. Additionally, changes in patterns of occurrence of the last spring freeze and first fall freeze are investigated. Linear time series slopes are analyzed to investigate the spatial and temporal trends of climate variability in North Carolina. Spatial analysis of climate variability across North Carolina is performed using a geographic information system. While most trends are local in nature, there are general statewide patterns. Precipitation in North Carolina has increased over the past 50 years during the fall and winter seasons, but decreased during the summer. Temperatures during the last 10 years are warmer than average, but are not warmer than those experienced during the 1950s. The warm season has become longer, as measured by the dates of the last spring freeze and first fall freeze. Generally, the last 10 years were the wettest of the study period. These conclusions are consistent with earlier studies that show that the difference between the maximum and minimum temperatures is decreasing, possibly due to increased cloud cover and precipitation. Similarly, these results show that temperature patterns are in phase with the North Atlantic Oscillation and precipitation patterns appear to be correlated with the Pacific Decadal Oscillation.
Bulletin of the American Meteorological Society | 2007
Roger A. Pielke; John W. Nielsen-Gammon; Christopher A. Davey; James R. Angel; Odie Bliss; Nolan J. Doesken; Ming Cai; Souleymane Fall; Dev Niyogi; Kevin P. Gallo; Robert Hale; Kenneth G. Hubbard; Xiaomao Lin; Hong Li; Sethu Raman
The objective of this research is to determine whether poorly sited long-term surface temperature monitoring sites have been adjusted in order to provide spatially representative independent data for use in regional and global surface temperature analyses. We present detailed analyses that demonstrate the lack of independence of the poorly sited data when they are adjusted using the homogenization procedures employed in past studies, as well as discuss the uncertainties associated with undocumented station moves. We use simulation and mathematics to determine the effect of trend on station adjustments and the associated effect of trend in the reference series on the trend of the adjusted station. We also compare data before and after adjustment to the reanalysis data, and we discuss the effect of land use changes on the uncertainty of measurement. A major conclusion of our analysis is that there are large uncertainties associated with the surface temperature trends from the poorly sited stations. Moreover...
Journal of Applied Meteorology | 1997
Devdutta Sadananda Niyogi; Sethu Raman
Stomatal resistance (Rs) calculation has a major impact on the surface energy partitioning that influences diverse boundary layer processes. Present operational limited area or mesoscale models have the Jarvis-type parameterization, whereas the microscale and the climate simulation models prefer physiological schemes for estimating Rs. The pivotal question regarding operational mesoscale models is whether an iterative physiological scheme needs to be adopted ahead of the analytical Jarvis-type formulation. This question is addressed by comparing the ability of three physiological schemes along with a typical Jarvistype scheme for predicting Rs using observations made during FIFE. The data used is typical of a C4-type vegetation, predominant in regions of high convective activity such as the semiarid Tropics and the southern United States grasslands. Data from three different intensive field campaigns are analyzed to account for vegetation and hydrological diversity. It is found that the Jarvis-type approach has low variance in the outcome due to a poor feedback for the ambient changes. The physiological models, on the other hand, are found to be quite responsive to the external environment. All three physiological schemes have a similar performance qualitatively, which suggests that the vapor pressure deficit approach or the relative humidity descriptor used in the physiological schemes may not yield different results for routine meteorological applications. For the data considered, the physiological schemes had a consistently better performance compared to the Jarvis-type scheme in predicting Rs outcome. All four schemes can, however, provide a reasonable estimate of the ensemble mean of the samples considered. A significant influence of the seasonal change in the minimum Rs in the Jarvis-type scheme was also noticed, which suggests the use of nitrogen-based information for improving the performance of the Jarvis-type scheme. A possible interactive influence of soil moisture on the capabilities of the four schemes is also discussed. Overall, the physiological schemes performed better under higher moisture availability.
Journal of Applied Meteorology and Climatology | 2009
Dev Niyogi; Kiran Alapaty; Sethu Raman; Fei Chen
Current land surface schemes used for mesoscale weather forecast models use the Jarvis-type stomatal resistance formulations for representing the vegetation transpiration processes. The Jarvis scheme, however, despite its robustness, needs significant tuning of the hypothetical minimum-stomatal resistance term to simulate surface energy balances. In this study, the authors show that the Jarvis-type stomatal resistance/transpiration model can be efficiently replaced in a coupled land‐atmosphere model with a photosynthesis-based scheme and still achieve dynamically consistent results. To demonstrate this transformative potential, the authors developed and coupled a photosynthesis, gas exchange‐based surface evapotranspiration model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM was dynamically coupled with a prognostic soil moisture‐soil temperature model and an atmospheric boundary layer (ABL) model. This coupled system was then validated over different natural surfaces including temperate C4 vegetation (prairie grass and corn field) and C3 vegetation (soybean, fallow, and hardwood forest) under contrasting surface conditions (such as different soil moisture and leaf area index). Results indicated that the coupled model was able to realistically simulate the surface fluxes and the boundary layer characteristics over different landscapes. The surface energy fluxes, particularly for latent heat, are typically within 10%‐20% of the observations without any tuning of the biophysical‐vegetation characteristics, and the response to the changes in the surface characteristics is consistent with observations and theory. This result shows that photosynthesis-based transpiration/stomatal resistance models such as GEM, despite various complexities, can be applied for mesoscale weather forecasting applications. Future efforts for understanding the different scaling parameterizations and for correcting errors for low soil moisture and/or wilting vegetation conditions are necessary to improve model performance. Results from this study suggest that the GEM approach using the photosynthesis-based soil vegetation atmosphere transfer (SVAT) scheme is thus superior to the Jarvis-based approaches. Currently GEM is being implemented within the Noah land surface model for the community Weather Research and Forecasting (WRF) Advanced Research Version Modeling System (ARW) and the NCAR high-resolution land data assimilation system (HRLDAS), and validation is under way.
Natural Hazards | 2004
M. Mandal; U. C. Mohanty; Sethu Raman
Prediction of the track and intensity of tropical cyclones is one of the most challenging problems in numerical weather prediction (NWP). The chief objective of this study is to investigate the performance of different cumulus convection and planetary boundary layer (PBL) parameterization schemes in the simulation of tropical cyclones over the Bay of Bengal. For this purpose, two severe cyclonic storms are simulated with two PBL and four convection schemes using non-hydrostatic version of MM5 modeling system. Several important model simulated fields including sea level pressure, horizontal wind and precipitation are compared with the corresponding verification analysis/observation. The track of the cyclones in the simulation and analysis are compared with the best-fit track provided by India Meteorological Department (IMD). The Hong-Pan PBL scheme (as implemented in NCAR Medium Range Forecast (MRF) model) in combination with Grell (or Betts-Miller) cumulus convection scheme is found to perform better than the other combinations of schemes used in this study. Though it is expected that radiative processes may not have pronounced effect in short-range forecasts, an attempt is made to calibrate the model with respect to the two radiation parameterization schemes used in the study. And the results indicate that radiation parameterization has noticeable impact on the simulation of tropical cyclones.
Boundary-Layer Meteorology | 1997
Kiran Alapaty; Sethu Raman; Devdutta Sadananda Niyogi
The effects of uncertainty in the specification of surface characteristics on simulated atmospheric boundary layer (ABL) processes and structure were investigated using a one-dimensional soil-vegetation-boundary layer model. Observational data from the First International Satellite Land Surface Climatology Project Field Experiment were selected to quantify prediction errors in simulated boundary-layer parameters. Several numerical 12-hour simulations were performed to simulate the convective boundary-layer structure, starting at 0700 LT 6 June 1987.In the control simulation, measured surface parameters and atmospheric data were used to simulate observed boundary-layer processes. In the remaining simulations, five surface parameters – soil texture, initial soil moisture, minimum stomatal resistance, leaf area index, and vegetation cover – were varied systematically to study how uncertainty in the specification of these surface parameters affects simulated boundary-layer processes.The simulated uncertainty in the specification of these five surface parameters resulted in a wide range of errors in the prediction of turbulent fluxes, mean thermodynamic structure, and the depth of the ABL. Under certain conditions uncertainty in the specifications of soil texture and minimum stomatal resistance had the greatest influence on the boundary-layer structure. A lesser but still moderately strong effect on the simulated ABL resulted from (1) a small decrease (4%) in the observed initial soil moisture (although a large increase [40%] had only a marginal effect), and (2) a large reduction (66%) in the observed vegetation cover. High uncertainty in the specification of leaf area index had only a marginal impact on the simulated ABL. It was also found that the variations in these five surface parameters had a negligible effect on the simulated horizontal wind fields. On the other hand, these variations had a significant effect on the vertical distribution of turbulent heat fluxes, and on the predicted maximum boundary-layer depth, which varied from about 1400–2300 m across the 11 simulations. Thus, uncertainties in the specification of surface parameters can significantly affect the simulated boundary-layer structure in terms of meteorological and air quality model predictions.
Monthly Weather Review | 1993
Joseph J. Cione; Sethu Raman; Leonard J. Pietrafesa
Abstract Midlatitude cyclones develop off the Carolinas during winters and move north producing gale-force winds, ice, and heavy snow. It is believed that boundary-layer and air-sea interaction processes are very important during the development stages of these East Coast storms. The marine boundary layer (MBL) off the mid- Atlantic coastline is highly baroclinic due to the proximity of the Gulf Stream just offshore. Typical horizontal distances between the Wilmington coastline and the western edge of the Gulf Stream vary between 90 and 250 km annually, and this distance can deviate by over 30 km within a single week. While similar weekly Gulf Stream position standard deviations also exist at Cape Hatteras, the average annual distance to the Gulf Stream frontal zone is much smaller off Cape Hatteras, normally ranging between 30 and 100 km. This research investigates the low-level baroclinic conditions present prior to observed storm events. The examination of nine years of data on the Gulf Stream position...
Journal of Hydrometeorology | 2002
Devdutta Sadananda Niyogi; Yongkang Xue; Sethu Raman
A statistical‐dynamical study was performed on the role of hydrometeorological interactions in the midlatitudes and the semiarid Tropics. For this, observations from two field experiments, the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) and the Hydrological Atmospheric Pilot Experiment (HAPEX)‐Sahel, representative of the midlatitudes and the semiarid tropical conditions, and simulated results from a land surface model, Simplified Simple Biosphere (SSiB) model were statistically analyzed for direct and interaction effects. The study objectives were to test the hypothesis that there are significant differences in the land surface processes in the semiarid tropical and midlatitudinal regimes and to identify the nature of the differences in the evapotranspiration exchanges for the two biogeographical domains. Results suggest there are similarities in the direct responses but the interactions or the indirect feedback pathways could be very different. The arid tropical regimes are dominated through vegetative pathways (via variables such leaf area index, stomatal resistance, and vegetal cover); the midlatitudes show soil wetness (moisture)‐related feedback. In addition, for the midlatitudinal case, the vegetation and the soil surface acted in unison, leading to more interactive exchanges between the vegetation and the soil surface. The water-stressed semiarid tropical surface, on the other hand, showed response either directly between the vegetation and the atmosphere or between the soil and the atmosphere with very little interaction between the vegetation and the soil variables. Thus, the semiarid Tropics would require explicit bare ground and vegetation fluxes consideration, whereas the effective (combined vegetation and soil fluxes) surface representation used in various models may be more valid for the midlatitudinal case. This result also implied that with higher resource (water) availability the surface invested more in the surrounding environment. On the other hand, with poor resource availability (such as water stress in the tropical site), the surface components retain individual resources without sharing.