Ryan C. Chiechi
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan C. Chiechi.
Journal of the American Chemical Society | 2011
Davide Fracasso; Hennie Valkenier; Jan C. Hummelen; Gemma C. Solomon; Ryan C. Chiechi
This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga(2)O(3) as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10(-1)A/cm(2) at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.
ACS Nano | 2008
Michael D. Dickey; Emily A. Weiss; Elizabeth J. Smythe; Ryan C. Chiechi; Federico Capasso; George M. Whitesides
This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.
Journal of the American Chemical Society | 2011
Hennie Valkenier; Everardus H. Huisman; Paul A. van Hal; Dagobert M. de Leeuw; Ryan C. Chiechi; Jan C. Hummelen
This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained.
Journal of the American Chemical Society | 2008
Changduk Yang; Shinuk Cho; Ryan C. Chiechi; Wesley Walker; Nelson E. Coates; Daniel Moses; Alan J. Heeger; Fred Wudl
Structural design, synthesis, and characterization of a series of organic semiconductors consisting exclusively of dithienylcyclopentadienone subunits within a polythiophene backbone are described as the first example for organic electronic devices. The donor (thiophene)-alt-acceptor (cyclopentadienone) copolymers exhibit a substantial p-carrier mobility in OFET but an unexpected noncorrelation between absorption and photoconductivity.
Journal of Materials Chemistry | 2011
Frank Brouwer; Jan Alma; Hennie Valkenier; Thomas P. Voortman; Jorrit Hillebrand; Ryan C. Chiechi; Jan C. Hummelen
We demonstrate the use of bis(pinacolato)diboron to directly polymerize symmetric, bisbromo, thiophene-based monomers via a Suzuki homo-polymerization to form co-polymers in less steps than the corresponding co-polymerization. We compare this method to the commonly used Stille co-polymerization by preparing four thiophene-based co-polymers using both methods. We use MALDI-TOF mass spectrometry to show that this new method produces high-quality, uniform polymers with narrow distributions of end-groups. By varying the electronegativity of the monomers, we demonstrate rudimentary control over these end-groups, forming either bis-H-, mono-H-mono-Br-, or bis-Br-terminated polymers in order of increasing electronegativity.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Samuel W. Thomas; Ryan C. Chiechi; Christopher N. LaFratta; Michael R. Webb; Andrew L. Lee; Benjamin J. Wiley; Mitchell R. Zakin; David R. Walt; George M. Whitesides
This article describes a self-powered system that uses chemical reactions—the thermal excitation of alkali metals—to transmit coded alphanumeric information. The transmitter (an “infofuse”) is a strip of the flammable polymer nitrocellulose patterned with alkali metal ions; this pattern encodes the information. The wavelengths of 2 consecutive pulses of light represent each alphanumeric character. While burning, infofuses transmit a sequence of pulses (at 5–20 Hz) of atomic emission that correspond to the sequence of metallic salts (and therefore to the encoded information). This system combines information technology and chemical reactions into a new area—“infochemistry”—that is the first step toward systems that combine sensing and transduction of chemical signals with multicolor transmission of alphanumeric information.
ACS Nano | 2012
Parisa Pourhossein; Ryan C. Chiechi
This paper describes the fabrication of electrically addressable, high-aspect-ratio (>10000:1) nanowires of gold with square cross sections of 100 nm on each side that are separated by gaps of 1.7-2.2 nm which were defined using self-assembled monolayers (SAMs) as templates. We fabricated these nanowires and nanogaps without a clean room or any photo- or electron-beam lithographic processes by mechanically sectioning sandwich structures of gold separated by a SAM using an ultramicrotome. This process is a form of edge lithography known as Nanoskiving. These wires can be manually positioned by transporting them on drops of water and are directly electrically addressable; no further lithography is required to connect them to an electrometer. Once a block has been prepared for Nanoskiving (which takes less than one day), hundreds of thousands of nanogaps can be generated, on demand, at a rate of about one nanogap per second. After ashing the organic components with oxygen plasma, we measured the width of a free-standing gap formed from a SAM of 16-mercaptodohexanoic acid (2.4 nm in length) of 2.6 ± 0.5 nm by transmission electron microscopy. By fitting current-voltage plots of unashed gaps containing three alkanedithiolates of differing lengths to Simmons’ approximation, we derived a value of β = 0.75 Å(-1) (0.94 n(C)(-1)) at 500 mV. This value is in excellent agreement with literature values determined by a variety of methods, demonstrating that the gap-size can be controlled at resolutions as low as 2.5 Å (i.e., two carbon atoms).
Journal of the American Chemical Society | 2015
Olga E. Castañeda Ocampo; Pavlo Gordiichuk; Stefano Catarci; Daniel A. Gautier; Andreas Herrmann; Ryan C. Chiechi
Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different “director SAMs” supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga–In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI.
Advanced Materials | 2016
Ziwei Zhou; Zhiyuan Zhao; Ye Yu; Bin Ai; Helmuth Möhwald; Ryan C. Chiechi; Joel K. W. Yang; Gang Zhang
Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field.
Journal of Materials Chemistry C | 2013
Robin Mays; Parisa Pourhossein; Dhanalekshmi Savithri; Jan Genzer; Ryan C. Chiechi; Michael D. Dickey
This paper describes the characterization of new embedding resins for nanoskiving (ultramicrotomy) that contain thiols. Nanoskiving is a technique to produce nanoscale structures using an ultramicrotome to section thin films of materials (e.g., gold) embedded in polymer. Epoxies are used typically as embedding resins for microtomy. Epoxies, however, do not adhere well to gold or other smooth metallic structures that are used commonly for nanoskiving. Thiol–ene and thiol–epoxy polymers provide improved adhesion to gold due to the thiol functional group. In addition, the thiol–ene polymers can be prepared within minutes using photopolymerization, which allows for rapid prototyping. Two commercial thiol-containing adhesives were evaluated as resins in addition to several formulations of commercially available monomers. The important physical and mechanical properties for microtomy of these unconventional embedding resins were characterized and the properties were compared to commercial epoxy resins. Gold nanowires were fabricated using nanoskiving of gold films embedded in these unconventional resins. These studies show that a 3 : 4 mixture of thiol (pentaerythritol tetra(3-mercaptopropionate)) and ene (triallyl-1,3,5-triazine-2,4,6-trione) works very well as a resin for nanoskiving and provides improved adhesion and reduced preparation time relative to epoxies.