Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan C. Ewing is active.

Publication


Featured researches published by Ryan C. Ewing.


Science | 2015

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

John P. Grotzinger; Sanjeev Gupta; M. C. Malin; David M. Rubin; Juergen Schieber; K. L. Siebach; Dawn Y. Sumner; Kathryn M. Stack; Ashwin R. Vasavada; Raymond E. Arvidson; F. Calef; Lauren Edgar; W.F. Fischer; J. A. Grant; J. L. Griffes; L. C. Kah; Michael P. Lamb; Kevin W. Lewis; N. Mangold; M. E. Minitti; Marisa C. Palucis; Melissa S. Rice; Rebecca M. E. Williams; R. A. Yingst; D. Blake; Diana L. Blaney; P. G. Conrad; Joy A. Crisp; William E. Dietrich; Gilles Dromart

Ancient lake system at Gale crater Since 2012, the Curiosity rover has been diligently studying rocky outcrops on Mars, looking for clues about past water, climate, and habitability. Grotzinger et al. describe the analysis of a huge section of sedimentary rocks near Gale crater, where Mount Sharp now stands (see the Perspective by Chan). The features within these sediments are reminiscent of delta, stream, and lake deposits on Earth. Although individual lakes were probably transient, it is likely that there was enough water to fill in low-lying depressions such as impact craters for up to 10,000 years. Wind-driven erosion removed many of these deposits, creating Mount Sharp. Science, this issue p.10.1126/science.aac7575, see also p. 167 Mount Sharp now stands where there was once a large intercrater lake system. [Also see Perspective by Chan] INTRODUCTION Remote observational data suggest that large bodies of standing water existed on the surface of Mars in its early history. This would have required a much wetter climate than that of the present, implying greater availability of water on a global basis and enhanced potential for global habitability. However, based on assumptions of a vast water inventory and models of atmospheric erosion, theoretical studies suggest a climate that was wetter but not by enough to sustain large lakes, even in depressions such as impact craters. RATIONALE The Mars Science Laboratory mission’s rover, Curiosity, provides the capability to test hypotheses about Mars’s past climate. The focus of the mission is the exploration of a ~5-km-high mountain, Aeolis Mons (informally known as Mount Sharp), located near the center of the ~140-km-wide Gale impact crater. Mount Sharp is underlain by hundreds of meters of sedimentary rock strata deposited ~3.6 billion to 3.2 billion years ago. These sediments accumulated in aqueous environments, recording the history of Mars’s ancient climate. Because of Curiosity’s ability to study these strata where they are exposed near the base of Mount Sharp, we can directly test the hypothesis that large impact craters were capable of accumulating and storing water as lakes for substantial periods of time. RESULTS Over the course of 2 years, Curiosity studied dozens of outcrops distributed along a ~9-km transect that also rose ~75 m in elevation. Image data were used to measure the geometry and grain sizes of strata and to survey the textures associated with sediment deposition and diagenesis. Erosion of Gale’s northern crater wall and rim generated gravel and sand that were transported southward in shallow streams. Over time, these stream deposits advanced toward the crater interior, transitioning downstream into finer-grained (sand-sized), southward-advancing delta deposits. These deltas marked the boundary of an ancient lake where the finest (mud-sized) sediments accumulated, infilling both the crater and its internal lake basin. After infilling of the crater, the sedimentary deposits in Gale crater were exhumed, probably by wind-driven erosion, creating Mount Sharp. The ancient stream and lake deposits are erosional remnants of superimposed depositional sequences that once extended at least 75 m, and perhaps several hundreds of meters, above the current elevation of the crater floor. Although the modern landscape dips northward away from Mount Sharp, the ancient sedimentary deposits were laid down along a profile that projected southward beneath Mount Sharp and indicate that a basin once existed where today there is a mountain. CONCLUSION Our observations suggest that individual lakes were stable on the ancient surface of Mars for 100 to 10,000 years, a minimum duration when each lake was stable both thermally (as liquid water) and in terms of mass balance (with inputs effectively matching evaporation and loss of water to colder regions). We estimate that the stratigraphy traversed thus far by Curiosity would have required 10,000 to 10,000,000 years to accumulate, and even longer if overlying strata are included. Though individual lakes may have come and gone, they were probably linked in time through a common groundwater table. Over the long term, this water table must have risen at least tens of meters to enable accumulation of the delta and lake deposits observed by Curiosity in Gale crater. Inclined strata in the foreground dip southward toward Mount Sharp and represent ancient delta deposits. These deposits transition into strata in the mid-field that were deposited in ancient lakes. The buttes and mesas in the background contain younger deposits that overlie and postdate the lake deposits beneath Mount Sharp. The outcrop in the foreground is about 6 m wide, and the buttes and mesas in the background are hundreds of meters wide and tens of meters high. The image has been white-balanced. [Credit: NASA/Caltech/JPL/MSSS] The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Science | 2016

Large wind ripples on Mars: A record of atmospheric evolution

Mathieu G.A. Lapotre; Ryan C. Ewing; Michael P. Lamb; Woodward W. Fischer; John P. Grotzinger; David M. Rubin; Kevin W. Lewis; M Ballard; Mitch D. Day; Sanjeev Gupta; Steven G. Banham; Nathan T. Bridges; D. J. Des Marais; A. A. Fraeman; J. A. Grant; Kenneth E. Herkenhoff; Douglas W. Ming; Michael A. Mischna; Melissa S. Rice; D A Sumner; Ashwin R. Vasavada; R. A. Yingst

Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.


Journal of Geophysical Research | 2010

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

Ryan C. Ewing; Aymeric-Pierre B. Peyret; Gary Kocurek; Mary C. Bourke

High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.


Geophysical Research Letters | 2014

Wind‐blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars

Ralph E. Milliken; Ryan C. Ewing; Woodward W. Fischer; Joel A. Hurowitz

Gale Crater contains Mount Sharp, a ~5km thick stratigraphic record of Mars’ early environmental history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, including preservation of wind-blown sand dune topography in sedimentary strata—a phenomenon that is rare on Earth and typically associated with stabilization, rapid sedimentation, transgression, and submergence of the land surface. The preserved bedforms in Gale are associated with clay minerals and elsewhere accompanied by typical dune cross stratification marked by bounding surfaces whose lateral equivalents contain sulfate salts. These observations extend the range of possible habitable environments that may be recorded within Gale Crater and provide hypotheses that can be tested in situ by the Curiosity rover payload.


Journal of Geophysical Research | 2017

Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

C. N. Achilles; Robert T. Downs; Douglas W. Ming; E. B. Rampe; Richard V. Morris; Allan H. Treiman; Shaunna M. Morrison; David F. Blake; D. T. Vaniman; Ryan C. Ewing; S. J. Chipera; Albert S. Yen; Thomas F. Bristow; Bethany L. Ehlmann; R. Gellert; Robert M. Hazen; Kim V. Fendrich; P. I. Craig; John P. Grotzinger; D. J. Des Marais; Jack D. Farmer; Philippe Sarrazin; J. M. Morookian

The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the <150 μm size fraction of the Namib dune at a location called Gobabeb. Gobabeb is dominated by basaltic minerals. Plagioclase, Fo56 olivine, and two Ca-Mg-Fe pyroxenes account for the majority of crystalline phases along with minor magnetite, quartz, hematite, and anhydrite. In addition to the crystalline phases, a minimum ~42 wt % of the Gobabeb sample is X-ray amorphous. Mineralogical analysis of the Gobabeb data set provides insights into the origin(s) and geologic history of the dune material and offers an important opportunity for ground truth of orbital observations. CheMins analysis of the mineralogy and phase chemistry of modern and ancient Gale crater dune fields, together with other measurements by Curiositys science payload, provides new insights into present and past eolian processes on Mars.


Journal of Geophysical Research | 2017

Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible‐shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

Mathieu G.A. Lapotre; Bethany L. Ehlmann; Sarah E. Minson; Raymond E. Arvidson; F. Ayoub; A. A. Fraeman; Ryan C. Ewing; Nathan T. Bridges

During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapkes radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances (~20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.


Journal of Geophysical Research | 2017

Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit

N. T. Bridges; R. Sullivan; Claire E. Newman; S. Navarro; J. van Beek; Ryan C. Ewing; F. Ayoub; S. Silvestro; O. Gasnault; S. Le Mouélic; Mathieu G.A. Lapotre; W. Rapin

The first in situ investigation of an active dune field on another planetary surface occurred in 2015-2016 when the MSL Curiosity rover investigated the Bagnold Dunes on Mars. HIRISE images show clear seasonal variations that are in good agreement with atmospheric model predictions of intra-annual sand flux and migration directions that together indicate that the campaign occurred during a period of low wind activity. Curiosity surface images show that limited changes nevertheless occurred, with movement of large grains, particularly on freshly exposed surfaces, two occurrences of secondary grain flow on the slip face of Namib Dune, and a slump on a freshly exposed surface of a large ripple. These changes are seen at sol-to-sol time scales. Grains on a rippled sand deposit and unconsolidated dump piles show limited movement of large grains over a few hours during which mean friction speeds are estimated at 0.3 - 0.4 m s-1. Overall, the correlation between changes and peak REMS winds is moderate, with high wind events associated with changes in some cases, but not in others, suggesting that other factors are also at work. The distribution of REMS 1 Hz wind speeds show a tail up to the 20 m s-1, showing that even higher speed winds occur. Non-aeolian triggering mechanisms are also possible. The low activity period at the dunes documented by Curiosity provides clues to processes that dominated in the Martian past under conditions of lower obliquity.


Journal of Geophysical Research | 2017

Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

Ryan C. Ewing; Mathieu G.A. Lapotre; Kevin W. Lewis; M. Day; N. Stein; David M. Rubin; R. Sullivan; Steven G. Banham; Michael P. Lamb; Nathan T. Bridges; Sanjeev Gupta; Woodward W. Fischer

Abstract The Mars Science Laboratory rover Curiosity visited two active wind‐blown sand dunes within Gale crater, Mars, which provided the first ground‐based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial‐like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large‐ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter‐scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune‐field pattern dynamics and basin‐scale boundary conditions will dictate the style and distribution of sedimentary processes.


Science | 2018

Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth

Paul M. Myrow; Michael P. Lamb; Ryan C. Ewing

A fast-melting snowball The Marinoan “snowball Earth” glaciation covered most of the planet in ice. The surface melted only when enough carbon dioxide had accumulated in the atmosphere to trap the Suns warmth. Melting must have occurred rapidly, but just how fast has been a topic of conjecture. Myrow et al. analyzed the wave ripples preserved in tidally deposited siltstones of the Elatina Formation, South Australia, to determine that sea level must have risen at the astounding rate of nearly 30 centimeters per year during the melting epoch, or roughly 100 times the rate that it is rising today. Science, this issue p. 649 Sea level rose 100 times faster during the melting of the Marinoan snowball Earth than it is rising today. Earth’s most severe climate changes occurred during global-scale “snowball Earth” glaciations, which profoundly altered the planet’s atmosphere, oceans, and biosphere. Extreme rates of glacioeustatic sea level rise are predicted by the snowball Earth hypothesis, but supporting geologic evidence has been lacking. We use paleohydraulic analysis of wave ripples and tidal laminae in the Elatina Formation, Australia—deposited after the Marinoan glaciation ~635 million years ago—to show that water depths of 9 to 16 meters remained nearly constant for ~100 years throughout 27 meters of sediment accumulation. This accumulation rate was too great to have been accommodated by subsidence and instead indicates an extraordinarily rapid rate of sea level rise (0.2 to 0.27 meters per year). Our results substantiate a fundamental prediction of snowball Earth models of rapid deglaciation during the early transition to a supergreenhouse climate.


Geophysical Research Letters | 2018

Morphologic Diversity of Martian Ripples: Implications for Large‐Ripple Formation

M. G. A. Lapotre; Ryan C. Ewing; Catherine M. Weitz; Kevin W. Lewis; Michael P. Lamb; Bethany L. Ehlmann; David M. Rubin

Large ripples with meter‐scale wavelengths are ubiquitous across Mars. Curiositys traverse of the Bagnold Dune Field revealed a morphologic diversity of large Martian ripples that helps constrain their formative mechanism. Large ripples develop in isolated fields and on dunes. They form transversely and obliquely to longitudinally to the net sand‐flux direction in unimodally and bimodally distributed very fine to very coarse sand. They have either straight or sinuous crestlines. Inactive ripples are covered with dust, whereas migrating ripples are dust free. Here we present a unifying view of ripples that form in near‐bed sediment‐transport conditions (encompassing fluid‐drag and coarse‐grained ripples) to explain the range of large‐Martian‐ripple morphologies and expand the use of bedforms as environmental indicators.

Collaboration


Dive into the Ryan C. Ewing's collaboration.

Top Co-Authors

Avatar

David M. Rubin

University of California

View shared research outputs
Top Co-Authors

Avatar

Mathieu G.A. Lapotre

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael P. Lamb

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathan T. Bridges

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin W. Lewis

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Gary Kocurek

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Woodward W. Fischer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge