Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan C. Sullivan is active.

Publication


Featured researches published by Ryan C. Sullivan.


Science | 2013

Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S.

Jessie M. Creamean; Kaitlyn J. Suski; Daniel Rosenfeld; Alberto Cazorla; Paul J. DeMott; Ryan C. Sullivan; Allen B. White; F. Martin Ralph; Patrick Minnis; Jennifer M. Comstock; Jason M. Tomlinson; Kimberly A. Prather

Action at a Distance Snowfall in the Sierra Nevada provides a large fraction of the water that California receives as precipitation. Knowing what factors influence the amount of snow that falls is thus critical for projecting how water availability may change in the future. Aerosols have an important effect on cloud processes and precipitation. Creamean et al. (p. 1572, published online 28 February) found that dust and biological aerosols originating from as far away as the Sahara facilitate ice nuclei formation and ice-induced precipitation in the Sierra Nevada and show how dust and biological articles from places as distant as Africa and Asia can influence precipitation over the western United States. Dust and biological aerosols from the Sahara and Asia can act as ice nuclei for precipitation in California’s Sierra Nevada. Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

Kimberly A. Prather; Timothy H. Bertram; Vicki H. Grassian; Grant B. Deane; M. Dale Stokes; Paul J. DeMott; Lihini I. Aluwihare; Brian Palenik; Farooq Azam; John H. Seinfeld; Ryan C. Moffet; Mario J. Molina; Christopher D. Cappa; Franz M. Geiger; G. C. Roberts; Lynn M. Russell; Andrew P. Ault; Jonas Baltrusaitis; Douglas B. Collins; C. E. Corrigan; Luis A. Cuadra-Rodriguez; Carlena J. Ebben; Sara Forestieri; Timothy L. Guasco; Scott Hersey; Michelle J. Kim; William Lambert; R. L. Modini; Wilton Mui; Byron E. Pedler

The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Sea spray aerosol as a unique source of ice nucleating particles

Paul J. DeMott; Thomas C. J. Hill; Christina S. McCluskey; Kimberly A. Prather; Douglas B. Collins; Ryan C. Sullivan; Matthew J. Ruppel; Ryan H. Mason; Victoria E. Irish; Taehyoung Lee; Chung Yeon Hwang; Tae Siek Rhee; Jefferson R. Snider; Gavin R. McMeeking; Suresh Dhaniyala; Ernie R. Lewis; Jeremy J. B. Wentzell; Jonathan P. D. Abbatt; Christopher Lee; Camille M. Sultana; Andrew P. Ault; Jessica L. Axson; Myrelis Diaz Martinez; Ingrid Venero; G. Santos-Figueroa; M. Dale Stokes; Grant B. Deane; Olga L. Mayol-Bracero; Vicki H. Grassian; Timothy H. Bertram

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.


Environmental Science & Technology | 2014

Influence of Functional Groups on Organic Aerosol Cloud Condensation Nucleus Activity

S. R. Suda; Markus D. Petters; Geoffrey K. Yeh; Christen Strollo; Aiko Matsunaga; Annelise Faulhaber; Paul J. Ziemann; Anthony J. Prenni; Christian M. Carrico; Ryan C. Sullivan; Sonia M. Kreidenweis

Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, κ. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in κ with the addition of one or more functional groups to otherwise similar molecules. The increase in κ per group decreased in the following order: hydroxyl ≫ carboxyl > hydroperoxide > nitrate ≫ methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity.


Journal of Geophysical Research | 2012

An annual cycle of size‐resolved aerosol hygroscopicity at a forested site in Colorado

E. J. T. Levin; Anthony J. Prenni; Markus D. Petters; Sonia M. Kreidenweis; Ryan C. Sullivan; Samuel A. Atwood; John Ortega; Paul J. DeMott; James N. Smith

Received 12 September 2011; revised 11 January 2012; accepted 22 January 2012; published 16 March 2012. [1] The ability of particles composed wholly or partially of biogenic secondary organic compounds to serve as cloud condensation nuclei (CCN) is a key characteristic that helps to define their roles in linking biogeochemical and water cycles. In this paper, we describe size-resolved (14–350 nm) CCN measurements from the Manitou Experimental Forest in Colorado, where particle compositions were expected to have a large biogenic component. These measurements were conducted for 1 year as part of the Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics, and Nitrogen program and determined the aerosol hygroscopicity parameter, k, at five water supersaturations between � 0.14% and � 0.97%. The average k value over the entire study and all supersaturations was kavg = 0.16 � 0.08. Kappa values decreased slightly with increasing supersaturation, suggesting a change in aerosol composition with dry diameter. Furthermore, some seasonal variability was observed with increased CCN concentrations and activated particle number fraction, but slightly decreased hygroscopicity, during the summer. Small particle events, which may indicate new particle formation, were observed throughout the study period, especially in the summer, leading to increases in CCN concentration, followed by a gradual increase in the aerosol mode size. The condensing material appeared to be predominantly composed of organic compounds and ledto a small decrease inkat the larger activation diameters during and immediately after those events.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Mixing of secondary organic aerosols versus relative humidity

Qing Ye; Ellis S. Robinson; Xiang Ding; Penglin Ye; Ryan C. Sullivan; Neil M. Donahue

Significance Recent studies called into question whether diffusion in “glassy” atmospheric secondary organic aerosols (SOA) is fast enough for phase partitioning to equilibrate, as commonly assumed in models; however, most of those studies relied on rheological measurements or uptake of small molecules such as water and ammonia. Here, we conduct unique SOA mixing experiments using single-particle mass spectrometry to probe the diffusion of semivolatile organics into SOA derived from toluene and α-pinene at different relative humidities. Results show that, if the SOA systems are representative, equilibrium partitioning likely does have time to occur in the boundary layer. This work directly probes uptake of semivolatile organics by SOA particles over a wide humidity range. Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.


Aerosol Science and Technology | 2010

Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles

Ryan C. Sullivan; M. J. K. Moore; Markus D. Petters; Sonia M. Kreidenweis; Odeta Qafoku; Alexander Laskin; G. C. Roberts; Kimberly A. Prather

Calcite (CaCO 3 ) mineral particles are commonly generated by atomization techniques to study their heterogeneous chemistry, hygroscopicity, and cloud nucleation properties. Here we investigate the significant artifact introduced in generating calcium mineral particles through the atomization of a saturated suspension of the powder in water, by measuring particle hygroscopicity via CCN activation curves. Particles produced from atomization displayed hygroscopicities as large as κapp > 0.1, 100 times more hygroscopic than that obtained for dry-generated calcite, κapp = 0.0011. The hygroscopicity of the wet-generated particles increased as a function of time the calcite powder spent in water, and with decreasing particle size. Wet-generated calcium oxalate was more hygroscopic through wet- (κapp = 0.34) versus dry-generation (κapp = 0.048). Atomized calcium sulfate particles, however, were only slightly more hygroscopic (κapp = 0.0045) than those generated dry (κapp = 0.0016). Single-particle analysis by ATOFMS and SEM/EDX, and bulk analysis of the calcite powders by ICP-MS and IC revealed no significant soluble contaminants. The atomized particles were likely composed of components that dissolved from the powder and then re-precipitated, and appeared to contain little of the original mineral powder. The increased hygroscopicity of atomized calcite may have been caused by aqueous carbonate chemistry producing Ca(OH) 2 , Ca(HCO 3 ) 2 , and metastable hydrates with increased solubility. Surface water adsorption may have also played a role, in addition to uncharacterized soluble components produced by wet-generation, and the precipitation of amorphous phases including glassy states. This study suggests that using wet-generation methods to suspend mineral dust samples will not produce particles with the correct physicochemical properties in laboratory studies, a finding which has important implications for past and future laboratory studies focusing on understanding relationships between the hygroscopicity and chemistry of mineral dust particles.


Scientific Reports | 2015

Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells

Min Su; Rong Hu; Jingjun Jin; Yuan Yan; Yinhong Song; Ryan C. Sullivan; Laijun Lai

Thymic epithelial cells (TECs) are the major components of the thymic microenvironment for T cell development. TECs are derived from thymic epithelial progenitors (TEPs). It has been reported that human ESCs (hESCs) can be directed to differentiate into TEPs in vitro. However, the efficiency for the differentiation is low. Furthermore, transplantation of hESC-TEPs in mice only resulted in a very low level of human T cell development from co-transplanted human hematopoietic precursors. We show here that we have developed a novel protocol to efficiently induce the differentiation of hESCs into TEPs in vitro. When transplanted into mice, hESC-TEPs develop into TECs and form a thymic architecture. Most importantly, the hESC-TECs support the long-term development of functional mouse T cells or a higher level of human T cell development from co-transplanted human hematopoietic precursors. The hESC-TEPs may provide a new approach to prevent or treat patients with T cell immunodeficiency.


Journal of Geophysical Research | 2016

The unstable ice nucleation properties of Snomax® bacterial particles

Michael Polen; Emily Lawlis; Ryan C. Sullivan

Snomax® is often used as a surrogate for biological ice nucleating particles (INPs) and has recently been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability over months of repeated droplet freezing measurements of the same batch of Snomax stored as dry pellets in a freezer. This reflects the fragility of the most ice active large protein aggregates, and presents issues for the use of Snomax as an INP standard. The ice nucleation properties we determined using a fresh Snomax batch agreed well with the recent method intercomparison from the INUIT project, while an older batch did not. Using an oil-immersion droplet freezing technique, repeated freezes of Snomax droplets resulted in a decrease in ice nucleation ability after successive refreezes. We attribute this to the disruption or displacement of the most ice active protein aggregates that are thought to contain the ice nucleants. Partitioning of the protein aggregates from the droplet into the immersion oil that is accelerated by droplet freezing events could explain the observed decrease in freezing ability. Droplets in mineral oil or low viscosity silicone oil experienced a smaller reduction in freezing temperature then when squalene oil was used. The effect of the immersion oil may be specific to proteinaceous biological particles and we have not observed it in non-proteinaceous materials. Caution is warranted in the use of oil-immersion droplet freezing methods to determine immersion freezing properties.


Aerosol Science and Technology | 2016

Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling

Georges Saliba; R. Subramanian; Rawad Saleh; Adam Ahern; Eric M. Lipsky; Antonios Tasoglou; Ryan C. Sullivan; Janarjan Bhandari; Claudio Mazzoleni; Allen L. Robinson

ABSTRACT Cookstoves are a major source of black carbon (BC) particles and associated organic compounds, which influence the atmospheric radiative balance. We present results from experiments that characterize BC emissions from a rocket stove coated with secondary organic aerosol. Optical properties, namely, BC mass absorption cross-section (MACBC) and mass scattering cross-section (MSC), as a function of the organic-to-black carbon ratio (OA:BC) of fresh and aged cookstove emissions were compared with Mie and Rayleigh–Debye–Gans (RDG) calculations. Mie theory reproduced the measured MACBC across the entire OA:BC range. However, Mie theory failed to capture the MSC at low OA:BC, where the data agreed better with RDG, consistent with a fractal morphology of fresh BC aggregates. As the OA:BC increased, the MSC approached Mie predictions indicating that BC-containing particles approach a core–shell structure as BC cores become heavily coated. To gain insight into the implications of our findings, we calculated the spectral simple forcing efficiency (dSFE) using measured and modeled optical properties as inputs. Good agreement between dSFE estimates calculated from measurements and Mie-modeled dSFE across the entire OA:BC range suggests that Mie theory can be used to simulate the optical properties of aged cookstove emissions. Copyright

Collaboration


Dive into the Ryan C. Sullivan's collaboration.

Top Co-Authors

Avatar

Paul J. DeMott

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus D. Petters

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Prather

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil M. Donahue

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Allen L. Robinson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Adam Ahern

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Ellis S. Robinson

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge