Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus D. Petters is active.

Publication


Featured researches published by Markus D. Petters.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Predicting global atmospheric ice nuclei distributions and their impacts on climate

Paul J. DeMott; Anthony J. Prenni; Xiaohong Liu; Sonia M. Kreidenweis; Markus D. Petters; Cynthia H. Twohy; Mathews S. Richardson; Trude Eidhammer; D. C. Rogers

Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 °C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 μm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from ∼103 to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of ∼1 W m-2 for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation.


Science | 2010

Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.

Ulrich Pöschl; Scot T. Martin; B. Sinha; Qi Chen; Sachin S. Gunthe; J. A. Huffman; S. Borrmann; Delphine K. Farmer; Rebecca M. Garland; Jose L. Jimenez; Stephanie King; Antonio O. Manzi; E. F. Mikhailov; Theotonio Pauliquevis; Markus D. Petters; Anthony J. Prenni; Pontus Roldin; D. Rose; Johannes Schneider; Hang Su; S. R. Zorn; Paulo Artaxo; Meinrat O. Andreae

Clean or Dirty Aerosols strongly affect atmospheric properties and processes—including visibility, cloud formation, and radiative behavior. Knowing their effects in both clean and polluted air is necessary in order to understand their influence (see the Perspective by Baltensperger). Clarke and Kapustin (p. 1488) examine vertical atmospheric profiles collected above the Pacific Ocean, where air quality is affected by the transport of polluted air from the west, and find significant regional enhancements in light scattering, aerosol mass, and aerosol number associated with combustion. Aerosol particle concentrations in this region can exceed values in clean, unperturbed regions by over an order of magnitude. Thus combustion affects hemispheric aerosol optical depth and the distribution of cloud condensation nuclei. Pöschl et al. (p. 1513) discuss the composition of aerosols above the Amazon Basin, in the pristine conditions of the rainy season. The aerosols in this region are derived mostly from gaseous biogenic precursors, plants, and microorganisms, and particle concentration is orders of magnitude lower than in polluted continental regions. The majority of cloud condensation nuclei in the Amazon during the wet season are derived from biogenic precursors. The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.


Bulletin of the American Meteorological Society | 2003

Dynamics and chemistry of marine stratocumulus - DYCOMS II

Bjorn Stevens; Donald H. Lenschow; Gabor Vali; H. Gerber; Alan R. Bandy; B. W. Blomquist; Christopher S. Bretherton; F. Burnet; Teresa L. Campos; S. Chai; Ian C. Faloona; D. Friesen; Samuel Haimov; Krista K. Laursen; Douglas K. Lilly; S. M. Loehrer; Szymon P. Malinowski; Bruce Morley; Markus D. Petters; Lynn M. Russell; Verica Savic-Jovcic; J. R. Snider; D. Straub; Marcin J. Szumowski; H. Takagi; Mark Tschudi; Cynthia H. Twohy; Melanie A. Wetzel; M. van Zanten

The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigat...


Monthly Weather Review | 2009

Large-Eddy Simulations of a Drizzling, Stratocumulus-Topped Marine Boundary Layer

Andrew S. Ackerman; M. C. vanZanten; Bjorn Stevens; Verica Savic-Jovcic; Christopher S. Bretherton; Andreas Chlond; Jean-Christophe Golaz; Hongli Jiang; Marat Khairoutdinov; Steven K. Krueger; D. C. Lewellen; A. P. Lock; Chin-Hoh Moeng; Kozo Nakamura; Markus D. Petters; Jefferson R. Snider; Sonja Weinbrecht; Mike A. Zulauf

Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


Journal of Geophysical Research | 2005

Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact

Cynthia H. Twohy; Markus D. Petters; Jefferson R. Snider; Bjorn Stevens; William Richard Tahnk; Melanie A. Wetzel; Lynn M. Russell; F. Burnet

Received 9 June 2004; revised 24 September 2004; accepted 10 February 2005; published 20 April 2005. [1] Data from nine stratocumulus clouds in the northeastern Pacific Ocean were analyzed to determine the effect of aerosol particles on cloud microphysical and radiative properties. Seven nighttime and two daytime cases were included. The number concentration of below-cloud aerosol particles (>0.10 mm diameter) was highly correlated with cloud droplet number concentration. Droplet number concentrations were typically about 75% of particle number concentration in the range of particle concentrations studied (� 400 cm � 3 ). Particle number was anticorrelated with droplet size and with liquid water content in drizzle-sized drops. Radiative impact also depends upon cloud liquid water content and geometric thickness. Although most variability in these macroscopic properties of the clouds could be attributed to variability in the large-scale environment, a weak anticorrelation between particle concentration and cloud geometric thickness was observed. Because of these variations, no correlation between calculated cloud optical thickness or albedo and particle concentration was detectable for the data set as a whole. For regions with comparable liquid water contents in an individual cloud, higher particle concentrations did correspond to increased cloud optical thickness. These results verify that higher particle concentrations do directly affect the microphysics of stratiform clouds. However, the constant liquid water path assumption usually invoked in the Twomey aerosol indirect effect may not be valid.


Bulletin of the American Meteorological Society | 2011

Resurgence in Ice Nuclei Measurement Research

Paul J. DeMott; O. Möhler; O. Stetzer; Gabor Vali; Zev Levin; Markus D. Petters; Masataka Murakami; Thomas Leisner; Ulrich Bundke; H. Klein; Zamin A. Kanji; Richard Cotton; Hazel Jones; Stefan Benz; Maren Brinkmann; Daniel Rzesanke; Harald Saathoff; M. Nicolet; Atsushi Saito; Björn Nillius; Heinz Bingemer; Jonathan P. D. Abbatt; Karin Ardon; Eli Ganor; Dimitrios G. Georgakopoulos; C. P. R. Saunders

Understanding cloud and precipitation responses to variations in atmospheric aerosols remains an important research topic for improving the prediction of climate. Knowledge is most uncertain, and the potential impact on climate is largest with regard to how aerosols impact ice formation in clouds. In this paper, we show that research on atmospheric ice nucleation, including the development of new measurement systems, is occurring at a renewed and historically unparalleled level. A historical perspective is provided on the methods and challenges of measuring ice nuclei, and the various factors that led to a lull in research efforts during a nearly 20-yr period centered about 30 yr ago. Workshops played a major role in defining critical needs for improving measurements at that time and helped to guide renewed efforts. Workshops were recently revived for evaluating present research progress. We argue that encouraging progress has been made in the consistency of measurements using the present generation of ic...


Physical Chemistry Chemical Physics | 2009

Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles

Kirsten Koehler; Paul J. DeMott; Sonia M. Kreidenweis; Olga B. Popovicheva; Markus D. Petters; Christian M. Carrico; Elena D. Kireeva; Tatiana D. Khokhlova; N. K. Shonija

Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperatures<or=-40 degrees C) of soot aerosols relevant for atmospheric studies were investigated. Soots were chosen to represent a range of physico-chemical properties, from hydrophobic through a range of hydrophilicity, to hygroscopic. These characteristics were achieved through generation by three different combustion sources; three soots from natural gas pyrolysis (original: TS; graphitized: GTS; and oxidized: TOS), soot from a diffusion flame in an oil lamp burning aviation kerosene (TC1), and soot from a turbulent diffusion flame in an aircraft engine combustor (AEC). All of the samples exhibited some heterogeneity in our experiments, which showed evidence of two or more particle sub-types even within a narrow size cut. The heterogeneity could have resulted from both chemical and sizing differences, the latter attributable in part to particle non-sphericity. Neither GTS nor TS, hydrophobic particles distinguished only by the lower porosity and polarity of the GTS surface, showed CCN activity at or below water supersaturations required for wettable, insoluble particles (the Kelvin limit). TC1 soot particles, despite classification as hydrophilic, did not show CCN activity at or below the Kelvin limit. We attribute this result to the microporosity of this soot. In contrast, oxidized, non-porous, and hydrophilic TOS particles exhibited CCN activation at very near the Kelvin limit, with a small percentage of these particles CCN-active even at lower supersaturations. Due to containing a range of surface coverage of organic and inorganic hydrophilic and hygroscopic compounds, up to approximately 35% of hygroscopic AEC particles were active as CCN, with a small percentage of these particles CCN-active at lower supersaturations. In ice nucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In contrast, GTS, TS, and TC1 required relative humidity well in excess of water saturation at -40 degrees C for ice formation. GTS particles required water supersaturation conditions for ice activation even at -51 degrees C. At -51 to -57 degrees C, ice formation in particles with electrical mobility diameter of 200 nm occurred in up to 1 in 1000 TS and TC1 particles, and 1 in 100 TOS particles, at relative humidities below those required for homogeneous freezing in aqueous solutions. Our results suggest that heterogeneous ice nucleation is favored in cirrus conditions on oxidized hydrophilic soot of intermediate polarity. Simple considerations suggest that the impact of hydrophilic soot particles on cirrus cloud formation would be most likely in regions of elevated atmospheric soot number concentrations. The ice formation properties of AEC soot are reasonably consistent with present understanding of the conditions required for aircraft contrail formation and the proportion of soot expected to nucleate under such conditions.


Environmental Research Letters | 2008

Single-parameter estimates of aerosol water content

Sonia M. Kreidenweis; Markus D. Petters; Paul J. DeMott

Water can represent a substantial fraction of the mass of tropospheric non-cloud particulate matter, and can also serve as a medium for aqueous-phase reactions in such particles. Aerosol water contents are highly dependent upon aerosol hygroscopicity and ambient relative humidities (RH). In this work we evaluate a recently proposed parameterization of composition-dependent aerosol hygroscopicity that predicts the volume of liquid water associated with a unit volume of dry aerosol. The predictions over the range 10% 85%) expected to have the most significant effects on tropospheric chemistry and radiation balance. Water contents for most of the compounds studied are generally represented within experimental uncertainties over the entire range of relative humidity examined, with the exception of marine-type particles dominated by sodium chloride and sodium sulfate.


Journal of the Atmospheric Sciences | 2010

Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud

Trude Eidhammer; Paul J. DeMott; Anthony J. Prenni; Markus D. Petters; Cynthia H. Twohy; D. C. Rogers; Jeffrey L. Stith; Andrew J. Heymsfield; Zhien Wang; Kerri A. Pratt; Kimberly A. Prather; Shane M. Murphy; John H. Seinfeld; Ramalingan B Subramanian; Sonia M. Kreidenweis

The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.


Aerosol Science and Technology | 2007

On Measuring the Critical Diameter of Cloud Condensation Nuclei Using Mobility Selected Aerosol

Markus D. Petters; Anthony J. Prenni; Sonia M. Kreidenweis; Paul J. DeMott

Cloud condensation nuclei (CCN) instruments determine the so-called “critical diameter” for activation of particles into cloud droplets at a fixed water supersaturation. A differential mobility analyzer is often used to size-select particles for purposes of scanning for the critical diameter. Usually the diameter where 50% of the particles have activated to cloud droplets is assumed to be equal to the critical diameter. We introduce a model that describes the transfer of polydisperse charge-equilibrated particles through an ideal differential mobility analyzer followed by transit through an ideal CCN instrument. We show that if the mode diameter of the polydisperse size distribution exceeds the critical diameter of the particles, multiply-charged particles may lead to nonmonotonic CCN counter response curves (plots of CCN-active fraction vs. mobility diameter) that exhibit multiple peaks, rather than a simple sigmoidally-shaped curve. Hence, determination of the 50% activation diameter is ambiguous. Multiply-charged particles significantly skew the CCNc response curves when sampling particles with critical diameters exceeding 0.1 μ m from particle size distributions with mode diameters also larger than the critical diameter. We present a method for inversion of CCN counter data that takes multiple-charging effects into account, and demonstrate its application to laboratory data. Our calculated CCN counter response curves are in good agreement with observations, and can be used to infer the critical activation diameter for a specified supersaturation.

Collaboration


Dive into the Markus D. Petters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. DeMott

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian M. Carrico

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryan C. Sullivan

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Paul J. Ziemann

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. J. T. Levin

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge