Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick Hartmann is active.

Publication


Featured researches published by Nick Hartmann.


Review of Scientific Instruments | 2015

Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

Stephen Weathersby; Garth Brown; Martin Centurion; T. Chase; Ryan Coffee; Jeff Corbett; John Eichner; J. Frisch; Alan Fry; Markus Gühr; Nick Hartmann; C. Hast; Robert Hettel; Renee K. Jobe; Erik N. Jongewaard; James Lewandowski; Renkai Li; Aaron M. Lindenberg; Igor Makasyuk; Justin E. May; D. McCormick; M. N. Nguyen; A. H. Reid; Xiaozhe Shen; Klaus Sokolowski-Tinten; T. Vecchione; Sharon Vetter; J. Wu; Jie Yang; Hermann A. Dürr

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.


Nature Communications | 2016

Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

Jie Yang; Markus Guehr; T. Vecchione; Matthew S. Robinson; Renkai Li; Nick Hartmann; Xiaozhe Shen; Ryan Coffee; Jeff Corbett; Alan Fry; Kelly J. Gaffney; Tais Gorkhover; C. Hast; K. Jobe; Igor Makasyuk; A. H. Reid; Joseph P. Robinson; Sharon Vetter; Fenglin Wang; Stephen Weathersby; Charles Yoneda; Martin Centurion; Xijie Wang

Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.


Nano Letters | 2015

Dynamic Structural Response and Deformations of Monolayer MoS2 Visualized by Femtosecond Electron Diffraction

Ehren M. Mannebach; Renkai Li; Karel-Alexander N. Duerloo; Clara Nyby; Peter Zalden; T. Vecchione; Friederike Ernst; A. H. Reid; T. Chase; Xiaozhe Shen; Stephen Weathersby; C. Hast; Robert Hettel; Ryan Coffee; Nick Hartmann; Alan Fry; Yifei Yu; Linyou Cao; Tony F. Heinz; Evan J. Reed; Hermann A. Dürr; Xijie Wang; Aaron M. Lindenberg

Two-dimensional materials are subject to intrinsic and dynamic rippling that modulates their optoelectronic and electromechanical properties. Here, we directly visualize the dynamics of these processes within monolayer transition metal dichalcogenide MoS2 using femtosecond electron scattering techniques as a real-time probe with atomic-scale resolution. We show that optical excitation induces large-amplitude in-plane displacements and ultrafast wrinkling of the monolayer on nanometer length-scales, developing on picosecond time-scales. These deformations are associated with several percent peak strains that are fully reversible over tens of millions of cycles. Direct measurements of electron-phonon coupling times and the subsequent interfacial thermal heat flow between the monolayer and substrate are also obtained. These measurements, coupled with first-principles modeling, provide a new understanding of the dynamic structural processes that underlie the functionality of two-dimensional materials and open up new opportunities for ultrafast strain engineering using all-optical methods.


Applied Physics Letters | 2016

Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

T. Chase; M. Trigo; A. H. Reid; Renkai Li; T. Vecchione; Xiaozhe Shen; Stephen Weathersby; Ryan Coffee; Nick Hartmann; David A. Reis; Xijie Wang; Hermann A. Dürr

We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.


Review of Scientific Instruments | 2016

Circular dichroism measurements at an x-ray free-electron laser with polarization control

Gregor Hartmann; Anton Lindahl; André Knie; Nick Hartmann; Alberto Lutman; James P. MacArthur; Ivan Shevchuk; Jens Buck; Andreas Galler; James M. Glownia; W. Helml; Z. Huang; N M Kabachnik; A. K. Kazansky; Jia Liu; Agostino Marinelli; T. Mazza; H.-D. Nuhn; Peter Walter; Jens Viefhaus; Michael Meyer; Stefan Moeller; Ryan Coffee; M. Ilchen

A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.


Proceedings of SPIE | 2012

Spectral encoding based measurement of x-ray/optical relative delay to ~10 fs rms

Mina Bionta; Doug French; James P. Cryan; J. M. Glownia; Nick Hartmann; David J. Nicholson; K. L. Baker; Christoph Bostedt; Marco Cammarrata; Matthieu Chollet; Y. Ding; David M. Fritz; Steve M. Durbin; Yiping Feng; M Harmand; Alan Fry; Daniel J. Kane; J. Krzywinski; Henrik T. Lemke; Marc Messerschmidt; Daniel Ratner; Sebastian Schorb; Sven Toleikis; Diling Zhu; William E. White; Ryan Coffee

A recently demonstrated single-shot measurement of the relative delay between x-ray FEL pulses and optical laser pulses has now been improved to ~10 fs rms error and has successfully been demonstrated for both soft and hard x-ray pulses. It is based on x-ray induced step-like reduction in optical transmissivity of a semiconductor membrane (Si3N4). The transmissivity is probed by an optical continuum spanning 450 - 650 nm where spectral chirp provides a mapping of the step in spectrum to the arrival time of the x-ray pulse relative to the optical laser system.


Nature Communications | 2018

Beyond a phenomenological description of magnetostriction

A. H. Reid; Xiaozhe Shen; Pablo Maldonado; T. Chase; E. Jal; P. W. Granitzka; Karel Carva; Renkai Li; Jing Li; Lijun Wu; T. Vecchione; T. Liu; Zhuoyu Chen; D. J. Higley; Nick Hartmann; Ryan Coffee; J. Wu; Georgi L. Dakovski; W. F. Schlotter; Hendrik Ohldag; Y. K. Takahashi; V. Mehta; O. Hellwig; Alan Fry; Yimei Zhu; J. Cao; Eric E. Fullerton; J. Stöhr; Peter M. Oppeneer; Xijie Wang

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.Although magnetostriction is universal in magnetic materials, understanding its microscopic origin remains challenging. Here the authors use X-ray and ultrafast electron diffraction to separate the material’s sub-picosecond spin and lattice responses and reveal the magnetoelastic stress generated by demagnetization.


Nature Communications | 2018

Publisher Correction : Beyond a phenomenological description of magnetostriction

A. H. Reid; Xiaozhe Shen; Pablo Maldonado; T. Chase; Emmanuelle Jal; Patrick Granitzka; Karel Carva; Renkai Li; Jing Li; Lijun Wu; T. Vecchione; T. Liu; Zhuoyu Chen; D. J. Higley; Nick Hartmann; Ryan Coffee; J. Wu; G. L. Dakowski; W. F. Schlotter; Hendrik Ohldag; Y. K. Takahashi; Virat Mehta; Olav Hellwig; Alan Fry; Yimei Zhu; J. Cao; Eric E. Fullerton; J. Stöhr; Peter M. Oppeneer; Xijie Wang

“The technical support from SLAC Accelerator Directorate, Technology Innovation Directorate, LCLS laser division and Test Facility Division is gratefully acknowledged. We thank S.P. Weathersby, R.K. Jobe, D. McCormick, A. Mitra, S. Carron and J. Corbett for their invaluable help and technical assistance. Research at SLAC was supported through the SIMES Institute which like the LCLS and SSRL user facilities is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The UED work was performed at SLAC MeV-UED, which is supported in part by the DOE BES SUF Division Accelerator & Detector R&D program, the LCLS Facility, and SLAC under contract Nos. DE-AC02-05-CH11231 and DE-AC02-76SF00515. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.”and“Work at BNL was supported by DOE BES Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886. J.C. would like to acknowledge the support from National Science Foundation Grant No. 1207252. E.E.F. would like to acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award No. DE-SC0003678.”This has been corrected in both the PDF and HTML versions of the Article.


Proceedings of SPIE | 2016

Experimental and analysis considerations for transmission/reflection spectrograms used in ultrafast x-ray pulse diagnostics

Daniel J. Kane; Nick Hartmann; Ryan Coffee; Alan Fry

Ultrafast time-dependent optical reflection and/or transmission spectroscopy can be used to measure time responses of materials and time arrivals between two unrelated ultrafast pulses. For example, a pump pulse, such as an x-ray pulse, excites a material, changing its refractive index. A spectrogram monitoring the change of intensity of a reflected or transmitted optical probe pulse can be used to indirectly monitor the refractive index change. Standard spectrogram deconvolution methods can be used to extract characteristics of both the material response and the probe pulse, but care must be taken to consider any experimental artifacts.


Proceedings of SPIE | 2016

Relativistic ultrafast electron diffraction from molecules in the gas phase(Conference Presentation)

Jie Yang; Markus Guehr; T. Vecchione; Matthew S. Robinson; Renkai Li; Nick Hartmann; Xiaozhe Shen; Martin Centurion; Xijie Wang

Ultrafast electron diffraction (UED) is a powerful technique that can be used to resolve structural changes of gas molecules during a photochemical reaction. However, the temporal resolution in pump-probe experiments has been limited to the few-ps level by the space-charge effect that broadens the electron pulse duration and by velocity mismatch between the pump laser pulses and the probe electron pulses, making only long-lived intermediate states accessible. Taking advantage of relativistic effects, Mega-electron-volt (MeV) electrons can be used to suppress both the space-charge effect and the velocity mismatch, and hence to achieve a temporal resolution that is fast enough to follow coherent nuclear motion in the target molecules. In this presentation, we show the first MeV UED experiments on gas phase targets. These experiments not only demonstrate that femtosecond temporal resolution is achieved, but also show that the spatial resolution is not compromised. This unprecedented combination of spatiotemporal resolution is sufficient to image coherent nuclear motions, and opens the door to a new class of experiments where the structural changes can be followed simultaneously in both space and time.

Collaboration


Dive into the Nick Hartmann's collaboration.

Top Co-Authors

Avatar

Ryan Coffee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alan Fry

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Vecchione

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Renkai Li

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaozhe Shen

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xijie Wang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen Weathersby

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. H. Reid

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeff Corbett

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge