Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan D. Estep is active.

Publication


Featured researches published by Ryan D. Estep.


Antioxidants & Redox Signaling | 2011

Nonhuman Primate Models of Human Immunology

Ilhem Messaoudi; Ryan D. Estep; Bridget A. Robinson; Scott W. Wong

Nonhuman primates have been used for biomedical research for several decades. The high level of genetic homology to humans coupled with their outbred nature has made nonhuman primates invaluable preclinical models. In this review, we summarize recent advances in our understanding of the nonhuman primate immune system, with special emphasis on studies carried out in rhesus macaque (Macaca mulatta). We highlight the utility of nonhuman primates in the characterization of immune senescence and the evaluation of new interventions to slow down the aging of the immune system.


Journal of Virology | 2007

Construction of an Infectious Rhesus Rhadinovirus Bacterial Artificial Chromosome for the Analysis of Kaposi's Sarcoma-Associated Herpesvirus-Related Disease Development

Ryan D. Estep; Michael F. Powers; Bonnie Yen; He Li; Scott W. Wong

ABSTRACT Rhesus rhadinovirus (RRV) is closely related to Kaposis sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) and causes KSHV-like diseases in immunocompromised rhesus macaques (RM) that resemble KSHV-associated diseases including multicentric Castlemans disease and non-Hodgkins lymphoma. RRV retains a majority of open reading frames (ORFs) postulated to be involved in the pathogenesis of KSHV and is the closest available animal model to KSHV infection in humans. Here we describe the generation of a recombinant clone of RRV strain 17577 (RRV17577) utilizing bacterial artificial chromosome (BAC) technology. Characterization of the RRV BAC demonstrated that it is a pathogenic molecular clone of RRV17577, producing virus that behaves like wild-type RRV both in vitro and in vivo. Specifically, BAC-derived RRV displays wild-type growth properties in vitro and readily infects simian immunodeficiency virus-infected RM, inducing B cell hyperplasia, persistent lymphadenopathy, and persistent infection in these animals. This RRV BAC will allow for rapid genetic manipulation of the RRV genome, facilitating the creation of recombinant versions of RRV that harbor specific alterations and/or deletions of viral ORFs. This system will provide insights into the roles of specific RRV genes in various aspects of the viral life cycle and the RRV-associated pathogenesis in vivo in an RM model of infection. Furthermore, the generation of chimeric versions of RRV containing KSHV genes will allow analysis of the function and contributions of KSHV genes to viral pathogenesis by using a relevant primate model system.


Journal of Virology | 2006

Rhesus Rhadinovirus R15 Encodes a Functional Homologue of Human CD200

Carly L. Langlais; John M. Jones; Ryan D. Estep; Scott W. Wong

ABSTRACT A viral CD200 homologue (vCD200) encoded by open reading frame R15 of rhesus rhadinovirus (RRV), a gammaherpesvirus closely related to human herpesvirus 8 (HHV-8), is described here. RRV vCD200 shares 30% and 28% amino acid identity with human CD200 (huCD200) and HHV-8 vCD200, respectively. In vitro analysis indicated that an Fc fusion (vCD200-Fc) is expressed as a glycoprotein with a core molecular mass of 53 kDa. Utilizing monoclonal antibodies raised against vCD200-Fc, vCD200 expression was detected on the surfaces of and within supernatants from infected fibroblasts. Furthermore, in vitro assays demonstrated that vCD200-Fc treatment of monocyte-derived macrophages reduces tumor necrosis factor transcript and protein levels, implying that RRV encodes a functional vCD200.


Journal of Virology | 2003

A G Protein-Coupled Receptor Encoded by Rhesus Rhadinovirus Is Similar to ORF74 of Kaposi's Sarcoma-Associated Herpesvirus

Ryan D. Estep; Michael K. Axthelm; Scott W. Wong

ABSTRACT Rhesus rhadinovirus (RRV) is a gamma-2 herpesvirus and is the rhesus macaque homologue of human herpesvirus 8 (HHV-8), also known as Kaposis sarcoma-associated herpesvirus. DNA sequence analysis of RRV indicates that it shares numerous open reading frames (ORFs) with HHV-8, including one (ORF74) encoding a seven-transmembrane-spanning G protein-coupled receptor (GPCR) with similarity to cellular chemokine receptors. Examination of the predicted amino acid sequence of RRV ORF74 reveals that it encodes a seven-transmembrane-spanning GPCR sharing 40.8% amino acid sequence identity with HHV-8 ORF74 and 24.1% amino acid sequence identity with rhesus macaque CXCR2. In addition, immunofluorescence studies indicate that an epitope-tagged version of RRV ORF74 is expressed on the surfaces of transfected cells, suggesting that this protein is in fact a membrane receptor. In in vitro cell culture assays, RRV ORF74 possesses transforming potential, as NIH 3T3 clones stably expressing the receptor demonstrate an increased ability to grow in soft agarose and to induce tumor formation in nude mice. Further analysis of RRV ORF74 indicates that expression of the receptor in NIH 3T3 cells causes an increased secretion of vascular endothelial growth factor and activation of the ERK1/2 (p44/42) mitogen-activated protein kinase signaling pathway. The results of these studies suggest that RRV ORF74 encodes a GPCR with properties similar to those of its homologue in HHV-8 and that this gene may play a role in RRV-associated pathogenesis.


Vaccine | 2010

Simian herpesviruses and their risk to humans

Ryan D. Estep; Ilhem Messaoudi; Scott W. Wong

A high level of genetic and physiological homology with humans has rendered non-human primates (NHP) an essential animal model for biomedical research. As such NHP offer a unique opportunity to study host-pathogen interactions in a species that closely mimics human biology but can yet be maintained under tight laboratory conditions. Indeed, studies using NHP have been critical to our understanding of pathogenesis as well as the development of vaccines and therapeutics. This further facilitated by the fact that NHPs are susceptible to a variety of pathogens that bear significant homology to human pathogens. Unfortunately, these same viruses pose a potential health issue to humans. In this review we discuss the simian herpesviruses and their potential to cause disease in researchers that come into close contact with them.


Journal of Virology | 2012

Viral Interferon Regulatory Factors Decrease the Induction of Type I and Type II Interferon during Rhesus Macaque Rhadinovirus Infection

Bridget A. Robinson; Ryan D. Estep; Ilhem Messaoudi; Kelsey S. Rogers; Scott W. Wong

ABSTRACT Kaposis sarcoma-associated herpesvirus and rhesus macaque rhadinovirus (RRV), two closely related gammaherpesviruses, are unique in their expression of viral homologs of cellular interferon regulatory factors (IRFs), termed viral IRFs (vIRFs). To assess the role of vIRFs during de novo infection, we have utilized the bacterial artificial chromosome clone of wild-type RRV17577 (WTBAC RRV) to generate a recombinant virus with all 8 of the vIRFs deleted (vIRF-ko RRV). The infection of primary rhesus fibroblasts and peripheral blood mononuclear cells (PBMCs) with vIRF-ko RRV resulted in earlier and increased induction of type I interferon (IFN) (IFN-α/β) and type II IFN (IFN-γ). Additionally, plasmacytoid dendritic cells maintained higher levels of IFN-α production in PBMC cultures infected with vIRF-ko RRV than in cultures infected with WTBAC RRV. Moreover, the nuclear accumulation of phosphorylated IRF-3, which is necessary for the induction of type I IFN, was also inhibited following WTBAC RRV infection. These findings demonstrate that during de novo RRV infection, vIRFs are inhibiting the induction of IFN at the transcriptional level, and one potential mechanism for this is the disruption of the activation and localization of IRF-3.


Journal of Virology | 2011

Deletion of the Monkeypox Virus Inhibitor of Complement Enzymes Locus Impacts the Adaptive Immune Response to Monkeypox Virus in a Nonhuman Primate Model of Infection

Ryan D. Estep; Ilhem Messaoudi; Megan A. O'Connor; Helen Li; Jerald Sprague; Alexander Barron; Flora Engelmann; Bonnie Yen; Michael F. Powers; John M. Jones; Bridget A. Robinson; Beata U. Orzechowska; Minsha Manoharan; Alfred W. Legasse; Shannon L. Planer; Jennifer Wilk; Michael K. Axthelm; Scott W. Wong

ABSTRACT Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.


Journal of Virology | 2012

Viral Interferon Regulatory Factors Are Critical for Delay of the Host Immune Response against Rhesus Macaque Rhadinovirus Infection

Bridget A. Robinson; Megan A. O'Connor; He Li; Flora Engelmann; Britt Poland; Richard Grant; Victor R. DeFilippis; Ryan D. Estep; Michael K. Axthelm; Ilhem Messaoudi; Scott W. Wong

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) and the closely related gamma-2 herpesvirus rhesus macaque (RM) rhadinovirus (RRV) are the only known viruses to encode viral homologues of the cellular interferon (IFN) regulatory factors (IRFs). Recent characterization of a viral IRF (vIRF) deletion clone of RRV (vIRF-knockout RRV [vIRF-ko RRV]) demonstrated that vIRFs inhibit induction of type I and type II IFNs during RRV infection of peripheral blood mononuclear cells. Because the IFN response is a key component to a hosts antiviral defenses, this study has investigated the role of vIRFs in viral replication and the development of the immune response during in vivo infection in RMs, the natural host of RRV. Experimental infection of RMs with vIRF-ko RRV resulted in decreased viral loads and diminished B cell hyperplasia, a characteristic pathology during acute RRV infection that often develops into more severe lymphoproliferative disorders in immune-compromised animals, similar to pathologies in KSHV-infected individuals. Moreover, in vivo infection with vIRF-ko RRV resulted in earlier and sustained production of proinflammatory cytokines and earlier induction of an anti-RRV T cell response compared to wild-type RRV infection. These findings reveal the broad impact that vIRFs have on pathogenesis and the immune response in vivo and are the first to validate the importance of vIRFs during de novo infection in the host.


Journal of Medical Primatology | 2009

Viral interleukin-6 encoded by rhesus macaque rhadinovirus is associated with lymphoproliferative disorder (LPD)

Beata U. Orzechowska; Minsha Manoharan; Jerald Sprague; Ryan D. Estep; Michael K. Axthelm; Scott W. Wong

Background  Rhesus macaques (RM) co‐infected with simian immunodeficiency virus (SIV) and rhesus macaque rhadinovirus (RRV) develop abnormal cellular proliferations characterized as extra‐nodal lymphoma and retroperitoneal fibromatosis (RF). RRV encodes a viral interleukin‐6 (vIL‐6), much like Kaposi’s sarcoma‐associated herpesvirus, and involvement of the viral cytokine was examined in proliferative lesions.


Journal of Virology | 2014

The Rhesus Rhadinovirus CD200 Homologue Affects Immune Responses and Viral Loads During in vivo Infection

Ryan D. Estep; Stephanie Rawlings; Helen Li; Minsha Manoharan; Elizabeth T. Blaine; Megan A. O'Connor; Ilhem Messaoudi; Michael K. Axthelm; Scott W. Wong

ABSTRACT Rhesus macaque rhadinovirus (RRV) is a gammaherpesvirus of rhesus macaque (RM) monkeys that is closely related to human herpesvirus 8 (HHV-8)/Kaposis Sarcoma-associated herpesvirus (KSHV), and it is capable of inducing diseases in simian immunodeficiency virus (SIV)-infected RM that are similar to those seen in humans coinfected with HIV and HHV-8. Both HHV-8 and RRV encode viral CD200 (vCD200) molecules that are homologues of cellular CD200, a membrane glycoprotein that regulates immune responses and helps maintain immune homeostasis via interactions with the CD200 receptor (CD200R). Though the functions of RRV and HHV-8 vCD200 molecules have been examined in vitro, the precise roles that these viral proteins play during in vivo infection remain unknown. Thus, to address the contributions of RRV vCD200 to immune regulation and disease in vivo, we generated a form of RRV that lacked expression of vCD200 for use in infection studies in RM. Our data indicated that RRV vCD200 expression limits immune responses against RRV at early times postinfection and also impacts viral loads, but it does not appear to have significant effects on disease development. Further, examination of the distribution pattern of CD200R in RM indicated that this receptor is expressed on a majority of cells in peripheral blood mononuclear cells, including B and T cells, suggesting potentially wider regulatory capabilities for both vCD200 and CD200 that are not strictly limited to myeloid lineage cells. In addition, we also demonstrate that RRV infection affects CD200R expression levels in vivo, although vCD200 expression does not play a role in this phenomenon. IMPORTANCE Cellular CD200 and its receptor, CD200R, compose a pathway that is important in regulating immune responses and is known to play a role in a variety of human diseases. A number of pathogens have been found to modulate the CD200-CD200R pathway during infection, including human herpesvirus 8 (HHV-8), the causative agent of Kaposis sarcoma and B cell neoplasms in AIDS patients, and a closely related primate virus, rhesus macaque rhadinovirus (RRV), which infects and induces disease in rhesus macaque monkeys. HHV-8 and RRV encode homologues of CD200, termed vCD200, which are thought to play a role in preventing immune responses against these viruses. However, neither molecule has been studied in an in vivo model of infection to address their actual contributions to immunoregulation and disease. Here we report findings from our studies in which we analyzed the properties of a mutant form of RRV that lacks vCD200 expression in infected rhesus macaques.

Collaboration


Dive into the Ryan D. Estep's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael K. Axthelm

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge