Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott W. Wong is active.

Publication


Featured researches published by Scott W. Wong.


Journal of Virology | 2003

Complete Sequence and Genomic Analysis of Rhesus Cytomegalovirus

Scott G. Hansen; Lisa I. Strelow; David Franchi; David G. Anders; Scott W. Wong

ABSTRACT The complete DNA sequence of rhesus cytomegalovirus (RhCMV) strain 68-1 was determined with the whole-genome shotgun approach on virion DNA. The RhCMV genome is 221,459 bp in length and possesses a 49% G+C base composition. The genome contains 230 potential open reading frames (ORFs) of 100 or more codons that are arranged colinearly with counterparts of previously sequenced betaherpesviruses such as human cytomegalovirus (HCMV). Of the 230 RhCMV ORFs, 138 (60%) are homologous to known HCMV proteins. The conserved ORFs include the structural, replicative, and transcriptional regulatory proteins, immune evasion elements, G protein-coupled receptors, and immunoglobulin homologues. Interestingly, the RhCMV genome also contains sequences with homology to cyclooxygenase-2, an enzyme associated with inflammatory processes. Closer examination identified a series of candidate exons with the capacity to encode a full-length cyclooxygenase-2 protein. Counterparts of cyclooxygenase-2 have not been found in other sequenced herpesviruses. The availability of the complete RhCMV sequence along with the ability to grow RhCMV in vitro will facilitate the construction of recombinant viral strains for identifying viral determinants of CMV pathogenicity in the experimentally infected rhesus macaque and to the development of CMV as a vaccine vector.


Nature Medicine | 2005

Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox.

Erika Hammarlund; Matthew W. Lewis; Shirley V Carter; Ian J. Amanna; Scott G. Hansen; Lisa I. Strelow; Scott W. Wong; Paul Yoshihara; Jon M. Hanifin; Mark K. Slifka

Approximately 50% of the US population received smallpox vaccinations before routine immunization ceased in 1972 for civilians and in 1990 for military personnel. Several studies have shown long-term immunity after smallpox vaccination, but skepticism remains as to whether this will translate into full protection against the onset of orthopoxvirus-induced disease. The US monkeypox outbreak of 2003 provided the opportunity to examine this issue. Using independent and internally validated diagnostic approaches with ≥95% sensitivity and ≥90% specificity for detecting clinical monkeypox infection, we identified three previously unreported cases of monkeypox in preimmune individuals at 13, 29 and 48 years after smallpox vaccination. These individuals were unaware that they had been infected because they were spared any recognizable disease symptoms. Together, this shows that the US monkeypox outbreak was larger than previously realized and, more importantly, shows that cross-protective antiviral immunity against West African monkeypox can potentially be maintained for decades after smallpox vaccination.


Journal of Immunotherapy | 2006

Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effects and toxicokinetic study.

Andrew D. Weinberg; Colin Thalhofer; Nicholas P. Morris; Joshua M. Walker; Donald Seiss; Scott W. Wong; Michael K. Axthelm; Louis J. Picker; Walter J. Urba

The immune-stimulatory properties of anti-CD134 (OX40) antibodies have been well documented in rodents, including their ability to enhance antitumor immunity. In this study, an anti-OX40 antibody (Ab) known to costimulate monkey T cells in vitro, was infused into rhesus macaque monkeys during immunization with the simian immunodeficiency virus protein, gp130. The draining lymph nodes from immunized monkeys treated with anti-OX40 were enlarged compared with immunized monkeys injected with mouse Ig. Anti-OX40-treated monkeys had increased gp130-specific Ab titers, and increased long-lived T-cell responses, compared with controls. There were no overt signs of toxicity in the anti-OX40-treated monkeys. The encouraging immune-stimulatory effects led to the good manufacturing practice production of an anti-OX40 Ab for clinical trials in cancer patients. A detailed toxicology study was performed with anti-OX40 in nonhuman primates. Three groups of 8 monkeys received anti-OX40 at 1 of 3 dose levels (0.4, 2.0, and 10 mg/kg) and a control group received saline. No clinical toxicity was observed, but acute splenomegaly and enlarged gut-associated lymph nodes were observed in the anti-OX40-treated animals; splenomegaly and lymphadenopathy resolved by day 28. These studies demonstrate the immune-stimulatory properties and safety of anti-OX40 in primates and provide a strong scientific rationale to pursue clinical trials in humans.


Antioxidants & Redox Signaling | 2011

Nonhuman Primate Models of Human Immunology

Ilhem Messaoudi; Ryan D. Estep; Bridget A. Robinson; Scott W. Wong

Nonhuman primates have been used for biomedical research for several decades. The high level of genetic homology to humans coupled with their outbred nature has made nonhuman primates invaluable preclinical models. In this review, we summarize recent advances in our understanding of the nonhuman primate immune system, with special emphasis on studies carried out in rhesus macaque (Macaca mulatta). We highlight the utility of nonhuman primates in the characterization of immune senescence and the evaluation of new interventions to slow down the aging of the immune system.


Blood | 2008

Rhesus macaque rhadinovirus-associated non-Hodgkin lymphoma: animal model for KSHV-associated malignancies

Beata U. Orzechowska; Michael F. Powers; Jerald Sprague; He Li; Bonnie Yen; Robert P. Searles; Michael K. Axthelm; Scott W. Wong

Rhesus macaque rhadinovirus (RRV) is closely related to Kaposi sarcoma-associated herpesvirus (KSHV) and is associated with the development of B-cell hyperplasia and persistent lymphadenopathy resembling multicentric Castleman disease in rhesus macaques (RMs) coinfected with simian immunodeficiency virus (SIV). Here we investigated whether RMs experimentally infected with SIV and RRV can develop other disease manifestations observed in HIV- and KSHV-infected patients. As reported earlier, inoculation of SIV-infected RMs with RRV results in persistent RRV infection, whereas immunocompetent animals infected with RRV exhibit viremia 2 weeks after infection, followed by a period of no virus detection until they are subsequently made immunodeficient by SIV infection. A subset of animals developed abnormal cellular proliferations characterized as extranodal lymphoma and a proliferative mesenchymal lesion. In situ hybridization and immunohistochemistry analysis indicate RRV is present in both malignancies, and DNA microarray analysis detected viral interleukin-6 (vIL-6) and viral FLICE-like inhibitory protein (vFLIP) transcripts. Reverse-transcriptase polymerase chain reaction analysis confirmed vIL-6 and vFLIP expression, and that of RRV open reading frames 72 and 73, homologs of KSHV open reading frames shown to be expressed in primary effusion lymphoma. These data support the utility of the RRV-/SIV-infected RM as an excellent animal model to investigate KSHV-like pathogenesis.


Journal of Virology | 2007

Construction of an Infectious Rhesus Rhadinovirus Bacterial Artificial Chromosome for the Analysis of Kaposi's Sarcoma-Associated Herpesvirus-Related Disease Development

Ryan D. Estep; Michael F. Powers; Bonnie Yen; He Li; Scott W. Wong

ABSTRACT Rhesus rhadinovirus (RRV) is closely related to Kaposis sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) and causes KSHV-like diseases in immunocompromised rhesus macaques (RM) that resemble KSHV-associated diseases including multicentric Castlemans disease and non-Hodgkins lymphoma. RRV retains a majority of open reading frames (ORFs) postulated to be involved in the pathogenesis of KSHV and is the closest available animal model to KSHV infection in humans. Here we describe the generation of a recombinant clone of RRV strain 17577 (RRV17577) utilizing bacterial artificial chromosome (BAC) technology. Characterization of the RRV BAC demonstrated that it is a pathogenic molecular clone of RRV17577, producing virus that behaves like wild-type RRV both in vitro and in vivo. Specifically, BAC-derived RRV displays wild-type growth properties in vitro and readily infects simian immunodeficiency virus-infected RM, inducing B cell hyperplasia, persistent lymphadenopathy, and persistent infection in these animals. This RRV BAC will allow for rapid genetic manipulation of the RRV genome, facilitating the creation of recombinant versions of RRV that harbor specific alterations and/or deletions of viral ORFs. This system will provide insights into the roles of specific RRV genes in various aspects of the viral life cycle and the RRV-associated pathogenesis in vivo in an RM model of infection. Furthermore, the generation of chimeric versions of RRV containing KSHV genes will allow analysis of the function and contributions of KSHV genes to viral pathogenesis by using a relevant primate model system.


Journal of Virology | 2004

A Cyclooxygenase-2 Homologue Encoded by Rhesus Cytomegalovirus Is a Determinant for Endothelial Cell Tropism

Cary A. Rue; Michael A. Jarvis; Amber J. Knoche; Heather Meyers; Victor R. DeFilippis; Scott G. Hansen; Markus Wagner; Klaus Früh; David G. Anders; Scott W. Wong; Peter A. Barry; Jay A. Nelson

ABSTRACT Cyclooxygenase-2 (COX-2) is a cellular enzyme in the eicosanoid synthetic pathway that mediates the synthesis of prostaglandins from arachidonic acid. The eicosanoids function as critical regulators of a number of cellular processes, including the acute and chronic inflammatory response, hemostasis, and the innate immune response. Human cytomegalovirus (HCMV), which does not encode a viral COX-2 isoform, has been shown to induce cellular COX-2 expression. Importantly, although the precise role of COX-2 in CMV replication is unknown, COX-2 induction was shown to be critical for normal HCMV replication. In an earlier study, we identified an open reading frame (Rh10) within the rhesus cytomegalovirus (RhCMV) genome that encoded a putative protein (designated vCOX-2) with high homology to cellular COX-2. In the current study, we show that vCOX-2 is expressed with early-gene kinetics during RhCMV infection, resulting in production of a 70-kDa protein. Consistent with the expression of a viral COX-2 isoform, cellular COX-2 expression was not induced during RhCMV infection. Finally, analysis of growth of recombinant RhCMV with vCOX-2 deleted identified vCOX-2 as a critical determinant for replication in endothelial cells.


Virology | 2003

The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian–human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques

Dinesh K. Singh; Darcy M. Griffin; Erik Pacyniak; Mollie Jackson; Michael J. Werle; Bo Wisdom; Francis Sun; David R. Hout; David M. Pinson; Robert S. Gunderson; Michael F. Powers; Scott W. Wong; Edward B. Stephens

The simian-human immunodeficiency virus (SHIV)/ macaque model for human immunodeficiency virus type 1 has become a useful tool to assess the role of Vpu in lentivirus pathogenesis. In this report, we have mutated the two phosphorylated serine residues of the HIV-1 Vpu to glycine residues and have reconstructed a SHIV expressing this nonphosphorylated Vpu (SHIV(S52,56G)). Expression studies revealed that this protein was localized to the same intracellular compartment as wild-type Vpu. To determine if this virus was pathogenic, four pig-tailed macaques were inoculated with SHIV(S52,56G) and virus burdens and circulating CD4(+) T cells monitored up to 1 year. Our results indicate that SHIV(S52,56G) caused rapid loss in the circulating CD4(+) T cells within 3 weeks of inoculation in one macaque (CC8X), while the other three macaques developed no or gradual numbers of CD4(+) T cells and a wasting syndrome. Histological examination of tissues revealed that macaque CC8X had lesions in lymphoid tissues (spleen, lymph nodes, and thymus) that were typical for macaques inoculated with pathogenic parental SHIV(KU-1bMC33) and had no lesions within the CNS. To rule out that macaque CC8X had selected for a virus in which there was reversion of the glycine residues at positions 52 and 56 to serine residues and/or compensating mutations occurred in other genes associated with CD4 down-regulation, sequence analysis was performed on amplified vpu sequences isolated from PBMC and from several lymphoid tissues at necropsy. Sequence analysis revealed a reversion of the glycine residues back to serine residues in this macaque. The other macaques maintained low virus burdens, with one macaque (P003) developing a wasting syndrome between months 9 and 11. Histological examination of tissues from this macaque revealed a thymus with severe atrophy that was similar to that of a previously reported macaque inoculated with a SHIV lacking vpu (Virology 293, 2002, 252). Sequence analysis revealed no reversion of the glycine residues in the vpu sequences isolated from this macaque. These results contrast with those from four macaques inoculated with the parental pathogenic SHIV(KU-1bMC33), all of which developed severe CD4(+) T cell loss within 1 month after inoculation. Taken together, these results indicate that casein kinase II phosphorylation sites of Vpu contributes to the pathogenicity of the SHIV(KU-1bMC33) and suggest that the SHIV(KU-1bMC33)/pig-tailed macaque model will be useful in analyzing amino acids/domains of Vpu that contribute to the pathogenesis of HIV-1.


Journal of Virology | 2006

Rhesus Rhadinovirus R15 Encodes a Functional Homologue of Human CD200

Carly L. Langlais; John M. Jones; Ryan D. Estep; Scott W. Wong

ABSTRACT A viral CD200 homologue (vCD200) encoded by open reading frame R15 of rhesus rhadinovirus (RRV), a gammaherpesvirus closely related to human herpesvirus 8 (HHV-8), is described here. RRV vCD200 shares 30% and 28% amino acid identity with human CD200 (huCD200) and HHV-8 vCD200, respectively. In vitro analysis indicated that an Fc fusion (vCD200-Fc) is expressed as a glycoprotein with a core molecular mass of 53 kDa. Utilizing monoclonal antibodies raised against vCD200-Fc, vCD200 expression was detected on the surfaces of and within supernatants from infected fibroblasts. Furthermore, in vitro assays demonstrated that vCD200-Fc treatment of monocyte-derived macrophages reduces tumor necrosis factor transcript and protein levels, implying that RRV encodes a functional vCD200.


Annals of Neurology | 2011

Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate.

Michael K. Axthelm; Dennis Bourdette; Gail Marracci; Weiping Su; Elizabeth T. Mullaney; Minsha Manoharan; Steven G. Kohama; Jim Pollaro; Ellen Witkowski; Paul Wang; William D. Rooney; Larry S. Sherman; Scott W. Wong

To describe Japanese macaque encephalomyelitis (JME), a spontaneous inflammatory demyelinating disease occurring in the Oregon National Primate Research Centers (ONPRC) colony of Japanese macaques (JMs, Macaca fuscata).

Collaboration


Dive into the Scott W. Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael K. Axthelm

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge