Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan D. Wilson is active.

Publication


Featured researches published by Ryan D. Wilson.


Biodegradation | 2004

Challenges in Monitoring the Natural Attenuation of Spatially Variable Plumes

Ryan D. Wilson; Steven F. Thornton; Douglas M. Mackay

Monitored natural attenuation may be applied as a risk-based remediation strategy if it can be established that contaminants are or will be reduced to some acceptable level at or before a compliance point. Contaminant attenuation is often attributed to intrinsic biodegradation, which in some circumstances may occur only at the plume fringes where electron acceptors from the surrounding uncontaminated zones mix by dispersion and diffusion with the plume. However, due to the common spatial and temporal variability exhibited by many plumes, the centreline monitoring approaches advocated in many natural attenuation protocols may be unable to detect natural attenuation occurring primarily by fringe processes. Snapshot data from a multilevel sampling well transect across an MTBE plume at Vandenberg Air Force Base, CA, USA, illustrate the difficulty of centreline monitoring and the challenge of providing sufficient detail to detect attenuation processes that may be occurring primarily at plume fringes. In a study of a phenols plume in Wolverhampton, UK, high-resolution multilevel wells demonstrated that the key biodegradation processes were restricted spatially to the upper fringe of the plume and were rate-limited by transverse dispersion and diffusion of electron acceptors into the plume. Thus the overall extent of biodegradation was considerably less than suggested by a plume-scale analysis of total electron acceptor and contaminant budgets. These examples indicate that more robust and cost-effective MNA assessments can be obtained using monitoring strategies that focus on the location of key biodegradation processes.


Environmental Science & Technology | 1995

Direct Detection of Residual Nonaqueous Phase Liquid in the Saturated Zone Using SF6 as a Partitioning Tracer.

Ryan D. Wilson; Douglas M. Mackay

Sulfur hexafluoride (SF 6 ) was investigated as a potential detector of residual dense nonaqueous phase liquids (DNAPL) below the water table. In NAPL-water batch partitioning tests, SF 6 had a partitioning coefficient (K NW =concentration in NAPL÷ concentration in water) of 3211.33 to TCE, 2411.27 to DCM, and 45±1.89 to o-DCB. Tracer tests with SF 6 and bromide in packed sand columns containing residual DNAPL show that SF 6 breakthrough is retarded relative to bromide. The SF 6 retardation factor was 2.2 relative to bromide in a column containing 3.69% residual TCE and 2.6 in a column with o-DCB at 3.52% residual saturation. A relatively simple relationship based on equilibrium partitioning and retardation theory was developed that allows very accurate estimates of DNAPL residual content encountered by SF 6 during transport. Using observed retardation factors from the column tests and the experimentally determined K ow values, this simple calculation was found to predict DNAPL residual saturations to within 2.5% of that actually emplaced


Journal of Contaminant Hydrology | 2010

Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation

J.E. Chambers; P.B. Wilkinson; G. P. Wealthall; Meng H. Loke; Rachel Dearden; Ryan D. Wilson; Debbie Allen; R.D. Ogilvy

Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents.


Ground Water | 2011

Increasing Confidence in Mass Discharge Estimates Using Geostatistical Methods

Zuansi Cai; Ryan D. Wilson; Michael Cardiff; Peter K. Kitanidis

Mass discharge is one metric rapidly gaining acceptance for assessing the performance of in situ groundwater remediation systems. Multilevel sampling transects provide the data necessary to make such estimates, often using the Thiessen Polygon method. This method, however, does not provide a direct estimate of uncertainty. We introduce a geostatistical mass discharge estimation approach that involves a rigorous analysis of data spatial variability and selection of an appropriate variogram model. High-resolution interpolation was applied to create a map of measurements across a transect, and the magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is quantified uncertainty of the mass discharge estimate. We tested the approach on data from two sites monitored using multilevel transects. We also used the approach to explore the effect of lower spatial monitoring resolution on the accuracy and uncertainty of mass discharge estimates. This process revealed two important findings: (1) appropriate monitoring resolution is that which yielded an estimate comparable with the full dataset value, and (2) high-resolution sampling yields a more representative spatial data structure descriptor, which can then be used via conditional simulation to make subsequent mass discharge estimates from lower resolution sampling of the same transect. The implication of the latter is that a high-resolution multilevel transect needs to be sampled only once to obtain the necessary spatial data descriptor for a contaminant plume exhibiting minor temporal variability, and thereafter less spatially intensely to reduce costs.


Journal of Contaminant Hydrology | 2013

Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone.

Rachel Dearden; D.J. Noy; M.R. Lelliott; Ryan D. Wilson; G. P. Wealthall

The invasion of DNAPL into fractured low permeability deposits results in the formation of secondary source zones that represent a long-term source of VOCs to adjacent aquifers. We present data from a site underlain by a fractured mudstone contaminated with TCE DNAPL that was poised for release following remediation of the overlying aquifer. Observations of contaminant distributions and fracture networks from the site and a nearby mudstone exposure respectively, enabled prediction of the imminent aquifer recontamination. The fractures, likely formed by gypsum dissolution, were characterised by fracture apertures and spacings that ranged from 0.01 to 49 mm and 0.047 to 3.37 m (10th and 90th percentile values) respectively. Numerical model results show that prediction of outward mass flux in the first year was highly variable (8 to 32 g/m²/d for an initial constant concentration with depth profile) and dependent on both the fracture spacing and aperture and the contaminant distribution. However after 1 year, assuming a heterogeneous distribution of fractures, mass flux was predictable within a narrow range of values (at 20 years; 0.04-0.08 g/m²/d). Similar results were obtained from more typical fracture networks with spacings of 0.1 to 0.5 m and apertures of 10 to 100 μm. These results suggest that when considering potential recontamination in a bounding aquifer, fracture characterisation may not be necessary and instead the focus should be on determining the surface area contributing contaminant mass to an aquifer, the contaminant concentration depth profiles, the hydraulic properties of the receiving aquifer and the elapsed time since aquifer remediation.


Ground Water | 2012

Assessing TCE source bioremediation by geostatistical analysis of a flux fence.

Zuansi Cai; Ryan D. Wilson; David N. Lerner

Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones.


Journal of Contaminant Hydrology | 2012

Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model

Gareth L. Barns; Ryan D. Wilson; Steven F. Thornton

This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties.


Journal of Contaminant Hydrology | 2015

Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: Fluorescent dye imaging and modelling at the laboratory-scale

Gareth L. Barns; Steven F. Thornton; Ryan D. Wilson

Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate.


Environmental Science & Technology | 2002

In situ MTBE biodegradation supported by diffusive oxygen release

Ryan D. Wilson; Douglas M. Mackay; Kate M. Scow


Environmental Science & Technology | 2002

Carbon and hydrogen isotopic fractionation during biodegradation of methyl tert-butyl ether.

Jennifer R. Gray; Georges Lacrampe-Couloume; Deepa Gandhi; Kate M. Scow; Ryan D. Wilson; Douglas M. Mackay; Barbara Sherwood Lollar

Collaboration


Dive into the Ryan D. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zuansi Cai

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate M. Scow

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge