Steven F. Thornton
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven F. Thornton.
Journal of Contaminant Hydrology | 2001
Steven F. Thornton; Sean Quigley; Michael J. Spence; Steven A. Banwart; Simon H. Bottrell; David N. Lerner
Processes controlling the distribution and natural attenuation (NA) of phenol, cresols and xylenols released from a former coal-tar distillation plant in a deep Triassic sandstone aquifer are evaluated from vertical profiles along the plume centerline at 130 and 350 m from the site. Up to four groups of contaminants (phenols, mineral acids, NaOH, NaCl) form discrete and overlapping plumes in the aquifer. Their distribution reflects changing source history with releases of contaminants from different locations. Organic contaminant distribution in the aquifer is determined more by site source history than degradation. Contaminant degradation at total organic carbon (TOC) concentrations up to 6500 mg l(-1) (7500 mg l(-1) total phenolics) is occurring by aerobic respiration NO3-reduction, Mn(IV)-/Fe(III)-reduction, SO4-reduction, methanogenesis and fermentation, with the accumulation of inorganic carbon, organic metabolites (4-hydroxybenzaldehyde, 4-hydroxybenzoic acid), acetate, Mn(II), Fe(II), S(-II), CH4 and H2 in the plume. Aerobic and NO3-reducing processes are restricted to a 2-m-thick plume fringe but Mn(IV)-/Fe(II)-reduction, SO4-reduction, methanogenesis and fermentation occur concomitantly in the plume. Dissolved H2 concentrations in the plume vary from 0.7 to 110 nM and acetate concentrations reach 200 mg l(-1). The occurrence of a mixed redox system and concomitant terminal electron accepting processes (TEAPs) could be explained with a partial equilibrium model based on the potential in situ free energy (deltaGr) yield for oxidation of H2 by specific TEAPs. Respiratory processes rather than fermentation are rate limiting in determining the distribution of H2 and TEAPs and H2 dynamics in this system. Most (min. 90%) contaminant degradation has occurred by aerobic and NO3-reducing processes at the plume fringe. This potential is determined by the supply of aqueous O2 and NO3 from uncontaminated groundwater, as controlled by transverse mixing, which is limited in this aquifer by low dispersion. Consumption to date of mineral oxides and SO4 is, respectively, <0.15% and 0.4% of the available aquifer capacity, and degradation using these oxidants is <10%. Fermentation is a significant process in contaminant turnover, accounting for 21% of degradation products present in the plume, and indicating that microbial respiration rates are slow in comparison with fermentation. Under present conditions, the potential for degradation in the plume is very low due to inhibitory effects of the contaminant matrix. Degradation products correspond to <22% mass loss over the life of the plume, providing a first-order plume scale half-life >140 years. The phenolic compounds are biodegradable under the range of redox conditions in the aquifer and the aquifer is not oxidant limited, but the plume is likely to be long-lived and to expand. Degradation is likely to increase only after contaminant concentrations are reduced and aqueous oxidant inputs are increased by dispersion of the plume. The results imply that transport processes may exert a greater control on the natural attenuation of this plume than aquifer oxidant availability.
Quarterly Journal of Engineering Geology and Hydrogeology | 2004
S.R. Buss; Alan W. Herbert; Philip Morgan; Steven F. Thornton; Jonathan Smith
Ammonium attenuation in subsoils and groundwater is predominantly due to cation exchange and/or nitrification (biological oxidation) processes. These processes have been little studied in UK formations and this relative lack of information can result in reduced consistency and robustness in the assessment of risks posed by ammonium contamination arising from landfills, effluent soakaways, contaminated sites and other sources. A review of ammonium fate and transport in the subsurface has been completed and guidance developed on the key processes that contribute to attenuation. The amount of relevant literature is small but sufficient to provide indicative ranges of partition coefficients and biological nitrification rates for ammonium in UK subsoils and aquifers. Ammonium attenuation was found to be highly sensitive to the clay mineralogy and pore size of the strata, the availability of oxygen and the chemical composition of the contaminated fluid. The values derived may have application in the initial (screening) phases of risk assessment where the conceptual model for the site under consideration matches that from which the presented data originate.
Journal of Contaminant Hydrology | 2001
K.U Mayer; Shawn G. Benner; Emil O. Frind; Steven F. Thornton; David N. Lerner
Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.
Journal of Contaminant Hydrology | 2001
Michael J. Spence; Simon H. Bottrell; Steven F. Thornton; David N. Lerner
A Triassic sandstone aquifer polluted with a mixture of phenolic hydrocarbons has been investigated by means of high-resolution groundwater sampling. Samples taken at depth intervals of 1 m have revealed the presence of a diving pollutant plume with a sharply defined upper margin. Concentrations of pollutant phenols exceed 4 g/l in the plume core, rendering it sterile but towards the diluted upper margin evidence for bacterial sulphate reduction (BSR) has been obtained. Groundwaters have been analysed for both delta34S-SO4 and delta18O-SO4. Two reservoirs have been identified with distinct sulphate oxygen isotope ratios. Groundwater sulphate (delta18O-SO4 = 3-5/1000) outside the plume shows a simple linear mixing trend with an isotopically uniform pollutant sulphate reservoir (delta18O-SO4 = 10-12/1000) across the plume margin. The sulphur isotope ratios do not always obey a simple mixing relation, however, at one multilevel borehole, enrichment in 34SO4 at the plume margin is inversely correlated with sulphate concentration. This and the presence of 34S-depleted dissolved sulphide indicate that enrichment in 34SO4 is the result of bacterial sulphate reduction. Delta34S analysis of trace hydrogen sulphide within the plume yielded an isotope enrichment factor (epsilon) of -9.4/1000 for present-day bacterial sulphate reduction. This value agrees with a long-term estimate (-9.9/1000) obtained from a Rayleigh model of the sulphate reduction process. The model was also used to obtain an estimate of the pre-reduction sulphate concentration profile with depth. The difference between this and the present-day profiles then gave a mass balance for sulphate consumption. The organic carbon mineralisation that would account for this sulphate loss is shown to represent only 0.1/1000 of the phenol concentration in this region of the plume. Hence, the contribution of bacterial sulphate reduction to biodegradation has thus far been small. The highest total phenolic concentration (TPC) at which there is sulphur isotope evidence of bacterial sulphate reduction is 2000 mg/l. We suggest that above this concentration, the bactericidal properties of phenol render sulphate-reducing bacteria inactive. Dissolved sulphate trapped in the concentrated plume core will only be utilised by sulphate reducers when toxic phenols in the plume are diluted by dispersion during migration.
Biodegradation | 2004
Ryan D. Wilson; Steven F. Thornton; Douglas M. Mackay
Monitored natural attenuation may be applied as a risk-based remediation strategy if it can be established that contaminants are or will be reduced to some acceptable level at or before a compliance point. Contaminant attenuation is often attributed to intrinsic biodegradation, which in some circumstances may occur only at the plume fringes where electron acceptors from the surrounding uncontaminated zones mix by dispersion and diffusion with the plume. However, due to the common spatial and temporal variability exhibited by many plumes, the centreline monitoring approaches advocated in many natural attenuation protocols may be unable to detect natural attenuation occurring primarily by fringe processes. Snapshot data from a multilevel sampling well transect across an MTBE plume at Vandenberg Air Force Base, CA, USA, illustrate the difficulty of centreline monitoring and the challenge of providing sufficient detail to detect attenuation processes that may be occurring primarily at plume fringes. In a study of a phenols plume in Wolverhampton, UK, high-resolution multilevel wells demonstrated that the key biodegradation processes were restricted spatially to the upper fringe of the plume and were rate-limited by transverse dispersion and diffusion of electron acceptors into the plume. Thus the overall extent of biodegradation was considerably less than suggested by a plume-scale analysis of total electron acceptor and contaminant budgets. These examples indicate that more robust and cost-effective MNA assessments can be obtained using monitoring strategies that focus on the location of key biodegradation processes.
Journal of Contaminant Hydrology | 2001
Steven F. Thornton; David N. Lerner; Steven A. Banwart
A quantitative methodology is described for the field-scale performance assessment of natural attenuation using plume-scale electron and carbon balances. This provides a practical framework for the calculation of global mass balances for contaminant plumes, using mass inputs from the plume source, background groundwater and plume residuals in a simplified box model. Biodegradation processes and reactions included in the analysis are identified from electron acceptors, electron donors and degradation products present in these inputs. Parameter values used in the model are obtained from data acquired during typical site investigation and groundwater monitoring studies for natural attenuation schemes. The approach is evaluated for a UK Permo-Triassic Sandstone aquifer contaminated with a plume of phenolic compounds. Uncertainty in the model predictions and sensitivity to parameter values was assessed by probabilistic modelling using Monte Carlo methods. Sensitivity analyses were compared for different input parameter probability distributions and a base case using fixed parameter values, using an identical conceptual model and data set. Results show that consumption of oxidants by biodegradation is approximately balanced by the production of CH4 and total dissolved inorganic carbon (TDIC) which is conserved in the plume. Under this condition, either the plume electron or carbon balance can be used to determine contaminant mass loss, which is equivalent to only 4% of the estimated source term. This corresponds to a first order, plume-averaged, half-life of > 800 years. The electron balance is particularly sensitive to uncertainty in the source term and dispersive inputs. Reliable historical information on contaminant spillages and detailed site investigation are necessary to accurately characterise the source term. The dispersive influx is sensitive to variability in the plume mixing zone width. Consumption of aqueous oxidants greatly exceeds that of mineral oxidants in the plume, but electron acceptor supply is insufficient to meet the electron donor demand and the plume will grow. The aquifer potential for degradation of these contaminants is limited by high contaminant concentrations and the supply of bioavailable electron acceptors. Natural attenuation will increase only after increased transport and dilution.
Water Research | 2002
Wei E. Huang; Colin C. Smith; David N. Lerner; Steven F. Thornton; Adrian Oram
The development and evaluation of a 2-dimensional physical model, which is designed to assist in the characterisation of complex solute transport problems in porous media, is described. The laboratory model is a transparent 2-dimensional porous media of nominal thickness and uses a non-invasive imaging technique in conjunction with a fluorescent dye tracer (sodium fluorescein) to monitor solute movements. Under ultraviolet (UV) illumination the dye emits visible light which is imaged by a CCD (Charge Coupled Device) camera. The image is processed to estimate the 2-dimensional distribution of tracer concentrations. The system can successfully model a simple contaminant plume within a homogenous porous matrix constructed from glass beads (60-100 microm). Experimental results show that transverse dispersion coefficient was 3.9 x 10(-10) m2/s when sodium fluorescein transported in porous matrix with a walter velocity of 5.71 x 10(-6) m/s. The low transverse dispersion coefficient suggests that the molecular diffusion of solute cannot be neglected under low velocity of the water. The advantages of using UV rather than an ordinary light system are a reduction in noise and experimental errors. Errors due to light dispersion within the model are shown to be negligible for the current model. Since contaminant with aromatic rings are usually fluorescent and biological samples can be labelled by fluorescent dye, this imaging technique using UV excited fluorescent dye will be used to investigate biodegradation process in porous media.
Chemosphere | 2014
R. T. Gill; Michael John Harbottle; Jonathan Smith; Steven F. Thornton
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.
Environmental Science & Technology | 2009
Yizhi Song; Guanghe Li; Steven F. Thornton; Ian P. Thompson; Steven A. Banwart; David N. Lerner; Wei E. Huang
In a study to optimize bacterial whole cell biosensors (bioreporters) for the detection of environmental contaminants, we constructed a toxicity sensing strain Acinetobacter baylyi ADP1_recA_lux. The ADP1_recA_lux is a chromosomally based bioreporter which makes the sensing system stable and negates the need for antibiotics to maintain the trait. The AOP1_recA_lux is activated to express bioluminescence when it is exposed to DNA damaging toxicants. Since the ADP1_recA_lux constantly expresses a baseline level of bioluminescence, false negative results are avoided. The host strain, A. baylyi ADP1, is an ideal model strain typical of water and soil bacteria occurring in the natural environment, and it is more robust than E. coli in terms of viability, maintenance, and storage. The expression of reporter genes - luxCDABE cloned from Photorhabdus luminescens - is robust in a broad range of temperature (10-40 degrees C). The ADP1_recA_lux was used to detect a variety of toxic or potentially toxic compounds including mitomycin C (MMC), methyl methanesulfonate, ethidium bromide, H2O2, toluene, single-wall nanocarbon tubes (SWNCT), nano Au colloids (20 nm), pyrene, beno[a]pyrene, and UV light. These exposures revealed that the ADP1_recA_lux was able to detect both genotoxicity and cytoxicity, qualitatively and quantitatively. The optimal induction time of the ADP1_recA_lux bioreporter was 3 h, and the detection limits for MMC and benezo[a]pyrene were 1.5 nM and 0.4 nM, respectively. The ADP1_recA_lux was also used to detect toxicity of groundwater contaminated by a mixture of phenolic compounds, and the bioreporter toxicity detection was in a good agreement with chemical analysis. The optimized whole cell bioreporter ADP1_recA_lux could be valuable in providing a simple, rapid, stable, quantitative, robust, and costly efficient approach for the detection of toxicity in environmental samples.
Journal of Contaminant Hydrology | 2000
Steven F. Thornton; John H. Tellam; David N. Lerner
Abstract The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate–rock interactions are dominated by ion-exchange processes, acid–base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (∼4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which may improve the prediction of contaminant attenuation are outlined.