Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Demeter is active.

Publication


Featured researches published by Ryan Demeter.


Nature | 2012

Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition

Matthew J. Ellis; Li Ding; Dong Shen; Jingqin Luo; Vera J. Suman; John W. Wallis; Brian A. Van Tine; Jeremy Hoog; Reece J. Goiffon; Theodore C. Goldstein; Sam Ng; Li Lin; Robert Crowder; Jacqueline Snider; Karla V. Ballman; Jason D. Weber; Ken Chen; Daniel C. Koboldt; Cyriac Kandoth; William Schierding; Joshua F. McMichael; Christopher A. Miller; Charles Lu; Christopher C. Harris; Michael D. McLellan; Michael C. Wendl; Katherine DeSchryver; D. Craig Allred; Laura Esserman; Gary Unzeitig

To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.


Nature | 2012

Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting

Hirokazu Matsushita; Matthew D. Vesely; Daniel C. Koboldt; Charles G. Rickert; Ravindra Uppaluri; Vincent Magrini; Cora D. Arthur; J. Michael White; Yee Shiuan Chen; Lauren Shea; Jasreet Hundal; Michael C. Wendl; Ryan Demeter; Todd Wylie; James P. Allison; Mark J. Smyth; Lloyd J. Old; Elaine R. Mardis; Robert D. Schreiber

Cancer immunoediting, the process by which the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T-cell recognition of tumour antigens drives the immunological destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective antitumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2−/− mice that phenotypically resemble nascent primary tumour cells. Using class I prediction algorithms, we identify mutant spectrin-β2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T-cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-β2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T-cell-dependent immunoselection process represents one mechanism of cancer immunoediting.


Cancer Cell | 2014

Functional Heterogeneity of Genetically Defined Subclones in Acute Myeloid Leukemia

Jeffery M. Klco; David H. Spencer; Christopher A. Miller; Malachi Griffith; Tamara Lamprecht; Michelle O’Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; Robert S. Fulton; William C. Eades; Daniel C. Link; Timothy A. Graubert; Matthew J. Walter; Elaine R. Mardis; John F. DiPersio; Richard Wilson; Timothy J. Ley

The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole-genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients.


JAMA | 2015

Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia

Jeffery M. Klco; Christopher A. Miller; Malachi Griffith; Allegra A. Petti; David H. Spencer; Shamika Ketkar-Kulkarni; Lukas D. Wartman; Matthew J. Christopher; Tamara Lamprecht; Nicole M. Helton; Eric J. Duncavage; Jacqueline E. Payton; Jack Baty; Sharon Heath; Obi L. Griffith; Dong Shen; Jasreet Hundal; Gue Su Chang; Robert S. Fulton; Michelle O'Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; David E. Larson; Shashikant Kulkarni; Bradley A. Ozenberger; John S. Welch; Matthew J. Walter; Timothy A. Graubert; Peter Westervelt

IMPORTANCE Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5% of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. [table: see text]. CONCLUSIONS AND RELEVANCE The detection of persistent leukemia-associated mutations in at least 5% of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML.


PLOS Genetics | 2014

Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

Andrew E. O. Hughes; Vincent Magrini; Ryan Demeter; Christopher A. Miller; Robert S. Fulton; Lucinda Fulton; William C. Eades; Kevin Elliott; Sharon Heath; Peter Westervelt; Li Ding; Donald F. Conrad; Brian S. White; Jin Shao; Daniel C. Link; John F. DiPersio; Elaine R. Mardis; Richard Wilson; Timothy J. Ley; Matthew J. Walter; Timothy A. Graubert

Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions—the population frequency of individual clones, their genetic composition, and their evolutionary relationships—which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.


Genome Research | 2013

Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma

David H. Gutmann; Michael D. McLellan; Ibrahim Hussain; John W. Wallis; Lucinda Fulton; Robert S. Fulton; Vincent Magrini; Ryan Demeter; Todd Wylie; Cyriac Kandoth; Jeffrey R. Leonard; Abhijit Guha; Christopher A. Miller; Li Ding; Elaine R. Mardis

Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline Nf1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) Nf1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%-60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment.


Leukemia | 2015

Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells

David H. Spencer; Margaret A. Young; Tamara Lamprecht; Nichole M. Helton; Robert S. Fulton; Michelle O'Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; Christopher A. Miller; Jeffery M. Klco; Richard Wilson; Timothy J. Ley

HOX genes are highly expressed in many acute myeloid leukemia (AML) samples, but the patterns of expression and associated regulatory mechanisms are not clearly understood. We analyzed RNA sequencing data from 179 primary AML samples and normal hematopoietic cells to understand the range of expression patterns in normal versus leukemic cells. HOX expression in AML was restricted to specific genes in the HOXA or HOXB loci, and was highly correlated with recurrent cytogenetic abnormalities. However, the majority of samples expressed a canonical set of HOXA and HOXB genes that was nearly identical to the expression signature of normal hematopoietic stem/progenitor cells. Transcriptional profiles at the HOX loci were similar between normal cells and AML samples, and involved bidirectional transcription at the center of each gene cluster. Epigenetic analysis of a subset of AML samples also identified common regions of chromatin accessibility in AML samples and normal CD34+ cells that displayed differences in methylation depending on HOX expression patterns. These data provide an integrated epigenetic view of the HOX gene loci in primary AML samples, and suggest that HOX expression in most AML samples represents a normal stem cell program that is controlled by epigenetic mechanisms at specific regulatory elements.


The Journal of Molecular Diagnostics | 2014

cDNA Hybrid Capture Improves Transcriptome Analysis on Low-Input and Archived Samples

Christopher R. Cabanski; Vincent Magrini; Malachi Griffith; Obi L. Griffith; Sean McGrath; Jin Zhang; Jason Walker; Amy Ly; Ryan Demeter; Robert S. Fulton; Winnie W. Pong; David H. Gutmann; Ramaswamy Govindan; Elaine R. Mardis; Christopher A. Maher

The use of massively parallel sequencing for studying RNA expression has greatly enhanced our understanding of the transcriptome through the myriad ways these data can be characterized. In particular, clinical samples provide important insights about RNA expression in health and disease, yet these studies can be complicated by RNA degradation that results from the use of formalin as a clinical preservative and by the limited amounts of RNA often available from these precious samples. In this study we describe the combined use of RNA sequencing with an exome capture selection step to enhance the yield of on-exon sequencing read data when compared with RNA sequencing alone. In particular, the exome capture step preserves the dynamic range of expression, permitting differential comparisons and validation of expressed mutations from limited and FFPE preserved samples, while reducing the data generation requirement. We conclude that cDNA hybrid capture has the potential to significantly improve transcriptome analysis from low-yield FFPE material.


PLOS Medicine | 2016

Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases

Katherine A. Hoadley; Marni B. Siegel; Krishna L. Kanchi; Christopher A. Miller; Li Ding; Wei Zhao; Xiaping He; Joel S. Parker; Michael C. Wendl; Robert S. Fulton; Ryan Demeter; Richard Wilson; Lisa A. Carey; Charles M. Perou; Elaine R. Mardis

Background Metastasis is the main cause of cancer patient deaths and remains a poorly characterized process. It is still unclear when in tumor progression the ability to metastasize arises and whether this ability is inherent to the primary tumor or is acquired well after primary tumor formation. Next-generation sequencing and analytical methods to define clonal heterogeneity provide a means for identifying genetic events and the temporal relationships between these events in the primary and metastatic tumors within an individual. Methods and Findings We performed DNA whole genome and mRNA sequencing on two primary tumors, each with either four or five distinct tissue site-specific metastases, from two individuals with triple-negative/basal-like breast cancers. As evidenced by their case histories, each patient had an aggressive disease course with abbreviated survival. In each patient, the overall gene expression signatures, DNA copy number patterns, and somatic mutation patterns were highly similar across each primary tumor and its associated metastases. Almost every mutation found in the primary was found in a metastasis (for the two patients, 52/54 and 75/75). Many of these mutations were found in every tumor (11/54 and 65/75, respectively). In addition, each metastasis had fewer metastatic-specific events and shared at least 50% of its somatic mutation repertoire with the primary tumor, and all samples from each patient grouped together by gene expression clustering analysis. TP53 was the only mutated gene in common between both patients and was present in every tumor in this study. Strikingly, each metastasis resulted from multiclonal seeding instead of from a single cell of origin, and few of the new mutations, present only in the metastases, were expressed in mRNAs. Because of the clinical differences between these two patients and the small sample size of our study, the generalizability of these findings will need to be further examined in larger cohorts of patients. Conclusions Our findings suggest that multiclonal seeding may be common amongst basal-like breast cancers. In these two patients, mutations and DNA copy number changes in the primary tumors appear to have had a biologic impact on metastatic potential, whereas mutations arising in the metastases were much more likely to be passengers.


Journal of Clinical Investigation | 2016

PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia.

Christopher B Cole; Angela M. Verdoni; Shamika Ketkar; Elizabeth R. Leight; David A. Russler-Germain; Tamara Lamprecht; Ryan Demeter; Vincent Magrini; Timothy J. Ley

The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.

Collaboration


Dive into the Ryan Demeter's collaboration.

Top Co-Authors

Avatar

Vincent Magrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elaine R. Mardis

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Malachi Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Obi L. Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David E. Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeffery M. Klco

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge