Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan E. Temel is active.

Publication


Featured researches published by Ryan E. Temel.


Nature | 2011

Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides

Katey J. Rayner; Christine Esau; Farah N. Hussain; Allison L. McDaniel; Stephanie M. Marshall; Janine M. van Gils; Tathagat Dutta Ray; Frederick J. Sheedy; Leigh Goedeke; Xueqing Liu; Oleg G. Khatsenko; Vivek Kaimal; Cynthia J. Lees; Carlos Fernández-Hernando; Edward A. Fisher; Ryan E. Temel; Kathryn J. Moore

Cardiovascular disease remains the leading cause of mortality in westernized countries, despite optimum medical therapy to reduce the levels of low-density lipoprotein (LDL)-associated cholesterol. The pursuit of novel therapies to target the residual risk has focused on raising the levels of high-density lipoprotein (HDL)-associated cholesterol in order to exploit its atheroprotective effects. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of lipid metabolism and are thus a new class of target for therapeutic intervention. MicroRNA-33a and microRNA-33b (miR-33a/b) are intronic miRNAs whose encoding regions are embedded in the sterol-response-element-binding protein genes SREBF2 and SREBF1 (refs 3–5), respectively. These miRNAs repress expression of the cholesterol transporter ABCA1, which is a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL levels and providing protection against atherosclerosis; however, extrapolating these findings to humans is complicated by the fact that mice lack miR-33b, which is present only in the SREBF1 gene of medium and large mammals. Here we show in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR-33b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in fatty acid oxidation (CROT, CPT1A, HADHB and PRKAA1) and reduced the expression of genes involved in fatty acid synthesis (SREBF1, FASN, ACLY and ACACA), resulting in a marked suppression of the plasma levels of very-low-density lipoprotein (VLDL)-associated triglycerides, a finding that has not previously been observed in mice. These data establish, in a model that is highly relevant to humans, that pharmacological inhibition of miR-33a and miR-33b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglyceride levels for the treatment of dyslipidaemias that increase cardiovascular disease risk.


Journal of Clinical Investigation | 2011

Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis

Katey J. Rayner; Frederick J. Sheedy; Christine Esau; Farah N. Hussain; Ryan E. Temel; Saj Parathath; Janine M. van Gils; Alistair Rayner; Aaron N. Chang; Yajaira Suárez; Carlos Fernández-Hernando; Edward A. Fisher; Kathryn J. Moore

Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that inhibit miR-33 increase ABCA1 and circulating HDL levels, suggesting that antagonism of miR-33 may be atheroprotective. As the regression of atherosclerosis is clinically desirable, we assessed the impact of miR-33 inhibition in mice deficient for the LDL receptor (Ldlr-/- mice), with established atherosclerotic plaques. Mice treated with anti-miR33 for 4 weeks showed an increase in circulating HDL levels and enhanced reverse cholesterol transport to the plasma, liver, and feces. Consistent with this, anti-miR33-treated mice showed reductions in plaque size and lipid content, increased markers of plaque stability, and decreased inflammatory gene expression. Notably, in addition to raising ABCA1 levels in the liver, anti-miR33 oligonucleotides directly targeted the plaque macrophages, in which they enhanced ABCA1 expression and cholesterol removal. These studies establish that raising HDL levels by anti-miR33 oligonucleotide treatment promotes reverse cholesterol transport and atherosclerosis regression and suggest that it may be a promising strategy to treat atherosclerotic vascular disease.


Journal of Clinical Investigation | 2007

Hepatic Niemann-Pick C1–like 1 regulates biliary cholesterol concentration and is a target of ezetimibe

Ryan E. Temel; Weiqing Tang; Yinyan Ma; Lawrence L. Rudel; Mark C. Willingham; Yiannis A. Ioannou; Joanna P. Davies; Lisa-Mari Nilsson; Liqing Yu

Niemann-Pick C1-like 1 (NPC1L1) is required for cholesterol absorption. Intestinal NPC1L1 appears to be a target of ezetimibe, a cholesterol absorption inhibitor that effectively lowers plasma LDL-cholesterol in humans. However, human liver also expresses NPC1L1. Hepatic function of NPC1L1 was previously unknown, but we recently discovered that NPC1L1 localizes to the canalicular membrane of primate hepatocytes and that NPC1L1 facilitates cholesterol uptake in hepatoma cells. Based upon these findings, we hypothesized that hepatic NPC1L1 allows the retention of biliary cholesterol by hepatocytes and that ezetimibe disrupts hepatic function of NPC1L1. To test this hypothesis, transgenic mice expressing human NPC1L1 in hepatocytes (L1-Tg mice) were created. Hepatic overexpression of NPC1L1 resulted in a 10- to 20-fold decrease in biliary cholesterol concentration, but not phospholipid and bile acid concentrations. This decrease was associated with a 30%-60% increase in plasma cholesterol, mainly because of the accumulation of apoE-rich HDL. Biliary and plasma cholesterol concentrations in these animals were virtually returned to normal with ezetimibe treatment. These findings suggest that in humans, ezetimibe may reduce plasma cholesterol by inhibiting NPC1L1 function in both intestine and liver, and hepatic NPC1L1 may have evolved to protect the body from excessive biliary loss of cholesterol.


Current Opinion in Lipidology | 1999

SCAVENGER RECEPTOR BI AND CHOLESTEROL TRAFFICKING

David L. Williams; Margery A. Connelly; Ryan E. Temel; Snehasikta Swarnakar; Michael C. Phillips; Margarita de la Llera-Moya; George H. Rothblat

Scavenger receptor BI (SR-BI) mediates the selective uptake of HDL cholesteryl ester into steroidogenic cells and the liver and is a major determinant of the plasma HDL concentration in the mouse. Recent studies indicate that SR-BI also alters the metabolism of apolipoprotein B-containing particles and influences the development of atherosclerosis in several animal models. These results and the similar pattern of SR-BI expression in humans emphasize that it is important to learn how this receptor influences lipoprotein metabolism and atherosclerosis in people.


Cell Reports | 2015

The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance

Manya Warrier; Diana M. Shih; Amy C. Burrows; Daniel Ferguson; Anthony D. Gromovsky; Amanda L. Brown; Stephanie Marshall; Allison L. McDaniel; Rebecca C. Schugar; Zeneng Wang; Jessica Sacks; Xin Rong; Thomas Q. de Aguiar Vallim; Jeff W. Chou; Pavlina T. Ivanova; David S. Myers; H. Alex Brown; Richard G. Lee; Rosanne M. Crooke; Mark J. Graham; Xiuli Liu; Paolo Parini; Peter Tontonoz; A J Lusis; Stanley L. Hazen; Ryan E. Temel; J. Mark Brown

Circulating levels of the gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) have recently been linked to cardiovascular disease (CVD) risk. Here, we performed transcriptional profiling in mouse models of altered reverse cholesterol transport (RCT) and serendipitously identified the TMAO-generating enzyme flavin monooxygenase 3 (FMO3) as a powerful modifier of cholesterol metabolism and RCT. Knockdown of FMO3 in cholesterol-fed mice alters biliary lipid secretion, blunts intestinal cholesterol absorption, and limits the production of hepatic oxysterols and cholesteryl esters. Furthermore, FMO3 knockdown stimulates basal and liver X receptor (LXR)-stimulated macrophage RCT, thereby improving cholesterol balance. Conversely, FMO3 knockdown exacerbates hepatic endoplasmic reticulum (ER) stress and inflammation in part by decreasing hepatic oxysterol levels and subsequent LXR activation. FMO3 is thus identified as a central integrator of hepatic cholesterol and triacylglycerol metabolism, inflammation, and ER stress. These studies suggest that the gut microbiota-driven TMA/FMO3/TMAO pathway is a key regulator of lipid metabolism and inflammation.


Journal of Clinical Investigation | 2012

Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin.

A. Phillip Owens; Freda Passam; Silvio Antoniak; Stephanie M. Marshall; Allison L. McDaniel; Lawrence L. Rudel; Julie C. Williams; Brian K. Hubbard; Julie Ann Dutton; Jianguo Wang; Peter S. Tobias; Linda K. Curtiss; Alan Daugherty; Daniel Kirchhofer; James P. Luyendyk; Patrick M. Moriarty; Shanmugam Nagarajan; Barbara C. Furie; Bruce Furie; Douglas G. Johns; Ryan E. Temel; Nigel Mackman

Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor-deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex.


Cell Metabolism | 2010

Biliary Sterol Secretion Is Not Required for Macrophage Reverse Cholesterol Transport

Ryan E. Temel; Janet K. Sawyer; Liqing Yu; Caleb C. Lord; Chiara Degirolamo; Allison L. McDaniel; Stephanie M. Marshall; Nanping Wang; Ramesh Shah; Lawrence L. Rudel; J. Mark Brown

Recent evidence suggests that the intestine may play a direct facilitative role in reverse cholesterol transport (RCT), independent of hepatobiliary secretion. In order to understand the nonbiliary pathway for RCT, we created both genetic and surgical models of biliary cholesterol insufficiency. To genetically inhibit biliary cholesterol secretion, we generated mice in which Niemann-Pick C1-Like 1 (NPC1L1) was overexpressed in the liver. Compared to controls, NPC1L1(Liver-Tg) mice exhibit a >90% decrease in biliary cholesterol secretion, yet mass fecal sterol loss and macrophage RCT are normal. To surgically inhibit biliary emptying into the intestine, we have established an acute biliary diversion model. Strikingly, macrophage RCT persists in mice surgically lacking the ability to secrete bile into the intestine. Collectively, these studies demonstrate that mass fecal sterol loss and macrophage RCT can proceed in the absence of biliary sterol secretion, challenging the obligate role of bile in RCT.


Journal of Biological Chemistry | 2003

Compared with Acyl-CoA:cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol.

Ryan E. Temel; Abraham K. Gebre; John S. Parks; Lawrence L. Rudel

The capacity of acyl-CoA:cholesterol O-acyltransferase (ACAT) 2 to differentiate cholesterol from the plant sterol, sitosterol, was compared with that of the sterol esterifying enzymes, ACAT1 and lecithin:cholesterol acyltransferase (LCAT). Cholesterol-loaded microsomes from transfected cells containing either ACAT1 or ACAT2 exhibited significantly more ACAT activity than their sitosterol-loaded counterparts. In sitosterol-loaded microsomes, both ACAT1 and ACAT2 were able to esterify sitosterol albeit with lower efficiencies than cholesterol. The mass ratios of cholesterol ester to sitosterol ester formed by ACAT1 and ACAT2 were 1.6 and 7.2, respectively. Compared with ACAT1, ACAT2 selectively esterified cholesterol even when sitosterol was loaded into the microsomes. To further characterize the difference in sterol specificity, ACAT1 and ACAT2 were compared in intact cells loaded with either cholesterol or sitosterol. Despite a lower level of ACAT activity, the ACAT1-expressing cells esterified 4-fold more sitosterol than the ACAT2 cells. The data showed that compared with ACAT1, ACAT2 displayed significantly greater selectively for cholesterol compared with sitosterol. The plasma cholesterol esterification enzyme lecithin:cholesterol acyltransferase was also compared. With recombinant high density lipoprotein particles, the esterification rate of cholesterol by LCAT was only 15% greater than for sitosterol. Thus, LCAT was able to efficiently esterify both cholesterol and sitosterol. In contrast, ACAT2 demonstrated a strong preference for cholesterol rather than sitosterol. This sterol selectivity by ACAT2 may reflect a role in the sorting of dietary sterols during their absorption by the intestine in vivo.


Current Opinion in Lipidology | 2012

Biliary and nonbiliary contributions to reverse cholesterol transport.

Ryan E. Temel; J. Mark Brown

Purpose of review The process of reverse cholesterol transport (RCT) is critical for disposal of excess cholesterol from the body. Although it is generally accepted that RCT requires biliary secretion, recent studies show that RCT persists in genetic or surgical models of biliary insufficiency. Discovery of this nonbiliary pathway has opened new possibilities of targeting the intestine as an inducible cholesterol excretory organ. In this review we highlight the relative contribution and therapeutic potential for both biliary and nonbiliary components of RCT. Recent findings Recently, the proximal small intestine has gained attention for its underappreciated ability to secrete cholesterol in a process called transintestinal cholesterol efflux (TICE). Although this intestinal pathway for RCT is quantitatively less important than the biliary route under normal physiological conditions, TICE is highly inducible, providing a novel therapeutic opportunity for treatment of atherosclerotic cardiovascular disease (ASCVD). In fact, recent studies show that intestine-specific activation of RCT protects against ASCVD in mice. Summary It is well known that the small intestine plays a gatekeeper role in the maintenance of cholesterol balance. Through integrated regulation of cholesterol absorption and TICE, the small intestine is a key target for new therapies against ASCVD.


PLOS ONE | 2011

Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake

Marisa W. Medina; Feng Gao; Devesh Naidoo; Lawrence L. Rudel; Ryan E. Temel; Allison L. McDaniel; Stephanie M. Marshall; Ronald M. Krauss

Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels.

Collaboration


Dive into the Ryan E. Temel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Cai

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge