Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn J. Moore is active.

Publication


Featured researches published by Kathryn J. Moore.


Nature | 2010

NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals

Peter Duewell; Hajime Kono; Katey J. Rayner; Cherilyn M. Sirois; Gregory I. Vladimer; Franz Bauernfeind; George S. Abela; Luigi Franchi; Guillermo Gabriel Nuñez; Max Schnurr; Terje Espevik; Egil Lien; Katherine A. Fitzgerald; Kenneth L. Rock; Kathryn J. Moore; Samuel D. Wright; Veit Hornung; Eicke Latz

The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1α/β-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.


Molecular Cell | 1999

PPARγ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro

Evan D. Rosen; Pasha Sarraf; Amy E Troy; Gary Bradwin; Kathryn J. Moore; David S. Milstone; Bruce M. Spiegelman; Richard M. Mortensen

Abstract The process of adipogenesis is known to involve the interplay of several transcription factors. Activation of one of these factors, the nuclear hormone receptor PPARγ, is known to promote fat cell differentiation in vitro. Whether PPARγ is required for this process in vivo has remained an open question because a viable loss-of-function model for PPARγ has been lacking. We demonstrate here that mice chimeric for wild-type and PPARγ null cells show little or no contribution of null cells to adipose tissue, whereas most other organs examined do not require PPARγ for proper development. In vitro, the differentiation of ES cells into fat is shown to be dependent on PPARγ gene dosage. These data provide direct evidence that PPARγ is essential for the formation of fat.


Nature Immunology | 2008

The NALP3 inflammasome is involved in the innate immune response to amyloid-beta

Annett Halle; Veit Hornung; Gabor C. Petzold; Cameron R. Stewart; Brian G. Monks; Thomas Reinheckel; Katherine A. Fitzgerald; Eicke Latz; Kathryn J. Moore; Douglas T. Golenbock

The fibrillar peptide amyloid-β (Aβ) has a chief function in the pathogenesis of Alzheimers disease. Interleukin 1β (IL-1β) is a key cytokine in the inflammatory response to Aβ. Insoluble materials such as crystals activate the inflammasome formed by the cytoplasmic receptor NALP3, which results in the release of IL-1β. Here we identify the NALP3 inflammasome as a sensor of Aβ in a process involving the phagocytosis of Aβ and subsequent lysosomal damage and release of cathepsin B. Furthermore, the IL-1β pathway was essential for the microglial synthesis of proinflammatory and neurotoxic factors, and the inflammasome, caspase-1 and IL-1β were critical for the recruitment of microglia to exogenous Aβ in the brain. Our findings suggest that activation of the NALP3 inflammasome is important for inflammation and tissue damage in Alzheimers disease.


Science | 2010

MiR-33 contributes to the regulation of cholesterol homeostasis.

Katey J. Rayner; Yajaira Suárez; Alberto Dávalos; Saj Parathath; Michael L. Fitzgerald; Norimasa Tamehiro; Edward A. Fisher; Kathryn J. Moore; Carlos Fernández-Hernando

miR-33 in Cholesterol Control With the well-established link between serum cholesterol levels and cardiovascular disease and the availability of effective cholesterol-lowering drugs, cholesterol screening has rapidly become a routine part of health care. Yet, much remains to be learned about how cholesterol levels are regulated at the cellular level (see the Perspective by Brown et al.). Now, Najafi-Shoushtari et al. (p. 1566, published online 13 May) and Rayner et al. (p. 1570, published online 13 May) have discovered a new molecular player in cholesterol control—a small noncoding RNA that, intriguingly, is embedded within the genes coding for sterol regulatory element-binding proteins (SREBPs), transcription factors already known to regulate cholesterol levels. This microRNA, called miR-33, represses expression of the adenosine triphosphate–binding cassette transporter A1, a protein that regulates synthesis of high-density lipoprotein (HDL, or “good” cholesterol) and that helps to remove “bad” cholesterol from the blood. Reducing the levels of miR-33 in mice boosted serum HDL levels, suggesting that manipulation of this regulatory circuit might be therapeutically useful. A small noncoding RNA helps regulate cholesterol levels in mice. Cholesterol metabolism is tightly regulated at the cellular level. Here we show that miR-33, an intronic microRNA (miRNA) located within the gene encoding sterol-regulatory element–binding factor–2 (SREBF-2), a transcriptional regulator of cholesterol synthesis, modulates the expression of genes involved in cellular cholesterol transport. In mouse and human cells, miR-33 inhibits the expression of the adenosine triphosphate–binding cassette (ABC) transporter, ABCA1, thereby attenuating cholesterol efflux to apolipoprotein A1. In mouse macrophages, miR-33 also targets ABCG1, reducing cholesterol efflux to nascent high-density lipoprotein (HDL). Lentiviral delivery of miR-33 to mice represses ABCA1 expression in the liver, reducing circulating HDL levels. Conversely, silencing of miR-33 in vivo increases hepatic expression of ABCA1 and plasma HDL levels. Thus, miR-33 appears to regulate both HDL biogenesis in the liver and cellular cholesterol efflux.


Nature Immunology | 2010

CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer

Cameron R. Stewart; Lynda M. Stuart; Kim Wilkinson; Janine M. van Gils; Jiusheng Deng; Annett Halle; Katey J. Rayner; Laurent Boyer; Ruiqin Zhong; William A. Frazier; Adam Lacy-Hulbert; Joseph El Khoury; Douglas T. Golenbock; Kathryn J. Moore

In atherosclerosis and Alzheimers disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-β triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-β trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-β stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.


Journal of Biological Chemistry | 2002

Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages.

Vidya V. Kunjathoor; Maria Febbraio; Eugene A. Podrez; Kathryn J. Moore; Lorna P. Andersson; Stephanie L. Koehn; Jeongmi S. Rhee; Roy L. Silverstein; Henry F. Hoff; Mason W. Freeman

Modification of low density lipoprotein (LDL) can result in the avid uptake of these lipoproteins via a family of macrophage transmembrane proteins referred to as scavenger receptors (SRs). The genetic inactivation of either of two SR family members, SR-A or CD36, has been shown previously to reduce oxidized LDL uptakein vitro and atherosclerotic lesions in mice. Several other SRs are reported to bind modified LDL, but their contribution to macrophage lipid accumulation is uncertain. We generated mice lacking both SR-A and CD36 to determine their combined impact on macrophage lipid uptake and to assess the contribution of other SRs to this process. We show that SR-A and CD36 account for 75–90% of degradation of LDL modified by acetylation or oxidation. Cholesteryl ester derived from modified lipoproteins fails to accumulate in macrophages taken from the double null mice, as assessed by histochemistry and gas chromatography-mass spectrometry. These results demonstrate that SR-A and CD36 are responsible for the preponderance of modified LDL uptake in macrophages and that other scavenger receptors do not compensate for their absence.


Nature Medicine | 2004

Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways

Harry Björkbacka; Vidya V. Kunjathoor; Kathryn J. Moore; Stephanie L. Koehn; Christine M. Ordija; Melinda A. Lee; Terry K. Means; Kristen A. Halmen; Andrew D. Luster; Douglas T. Golenbock; Mason W. Freeman

Atherosclerosis, the leading cause of death in developed countries, has been linked to hypercholesterolemia for decades. More recently, atherosclerotic lesion progression has been shown to depend on persistent, chronic inflammation in the artery wall. Although several studies have implicated infectious agents in this process, the role of infection in atherosclerosis remains controversial. Because the involvement of monocytes and macrophages in the pathogenesis of atherosclerosis is well established, we investigated the possibility that macrophage innate immunity signaling pathways normally activated by pathogens might also be activated in response to hyperlipidemia. We examined atherosclerotic lesion development in uninfected, hyperlipidemic mice lacking expression of either lipopolysaccharide (LPS) receptor CD14 or myeloid differentiation protein-88 (MyD88), which transduces cell signaling events downstream of the Toll-like receptors (TLRs), as well as receptors for interleukin-1 (IL-1) and IL-18. Whereas the MyD88-deficient mice evinced a marked reduction in early atherosclerosis, mice deficient in CD14 had no decrease in early lesion development. Inactivation of the MyD88 pathway led to a reduction in atherosclerosis through a decrease in macrophage recruitment to the artery wall that was associated with reduced chemokine levels. These findings link elevated serum lipid levels to a proinflammatory signaling cascade that is also engaged by microbial pathogens.


Nature Medicine | 2001

The role of PPAR-γ in macrophage differentiation and cholesterol uptake

Kathryn J. Moore; Evan D. Rosen; Michael L. Fitzgerald; Felix Randow; Lorna P. Andersson; David Altshuler; David S. Milstone; Richard M. Mortensen; Bruce M. Spiegelman; Mason W. Freeman

Peroxisome proliferator-activated receptor-γ (PPAR-γ), the transcription factor target of the anti-diabetic thiazolidinedione (TZD) drugs, is reported to mediate macrophage differentiation and inflammatory responses. Using PPAR-γ–deficient stem cells, we demonstrate that PPAR-γ is neither essential for myeloid development, nor for such mature macrophage functions as phagocytosis and inflammatory cytokine production. PPAR-γ is required for basal expression of CD36, but not for expression of the other major scavenger receptor responsible for uptake of modified lipoproteins, SR-A. In wild-type macrophages, TZD treatment divergently regulated CD36 and class A macrophage-scavenger receptor expression and failed to induce significant cellular cholesterol accumulation, indicating that TZDs may not exacerbate macrophage foam-cell formation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Scavenger Receptors in Atherosclerosis: Beyond Lipid Uptake

Kathryn J. Moore; Mason W. Freeman

Atherosclerotic vascular disease arises as a consequence of the deposition and retention of serum lipoproteins in the artery wall. Macrophages in lesions have been shown to express > or = 6 structurally different scavenger receptors for uptake of modified forms of low-density lipoproteins (LDLs) that promote the cellular accumulation of cholesterol. Because cholesterol-laden macrophage foam cells are the primary component of the fatty streak, the earliest atherosclerotic lesion, lipid uptake by these pathways has long been considered a requisite and initiating event in the pathogenesis of atherosclerosis. Although the removal of proinflammatory modified LDLs from the artery wall via scavenger receptors would seem beneficial, the pathways distal to scavenger receptor uptake that metabolize the modified lipoproteins appear to become overwhelmed, leading to the accumulation of cholesterol-laden macrophages and establishment of a chronic inflammatory setting. These observations have led to the current dogma concerning scavenger receptors, which is that they are proatherogenic molecules. However, recent studies suggest that the effects of scavenger receptors on atherogenesis may be more complex. In addition to modified lipoprotein uptake, these proteins are now known to regulate apoptotic cell clearance, initiate signal transduction, and serve as pattern recognition receptors for pathogens, activities that may contribute both to proinflammatory and anti-inflammatory forces regulating atherogenesis. In this review, we focus on recent advances in our knowledge of scavenger receptor regulation and signal transduction, their roles in sterile inflammation and infection, and the potential impact of these pathways in regulating the balance of lipid accumulation and inflammation in the artery wall.


Journal of Cell Biology | 2005

Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain

Lynda M. Stuart; Jiusheng Deng; Jessica M. Silver; Kazue Takahashi; Anita A. Tseng; Elizabeth J. Hennessy; R. Alan B. Ezekowitz; Kathryn J. Moore

Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-α and IL-12 production. As a result, Cd36 −/− mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling.

Collaboration


Dive into the Kathryn J. Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas T. Golenbock

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron R. Stewart

Australian Animal Health Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge