Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Eastman is active.

Publication


Featured researches published by Ryan Eastman.


Journal of Climate | 2007

A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations, 1971-96

Stephen G. Warren; Ryan Eastman; Carole J. Hahn

From a dataset of weather observations from land stations worldwide, about 5400 stations were selected as having long periods of record with cloud-type information; they cover all continents and many islands. About 185 million synoptic reports were analyzed for total cloud cover and the amounts of nine different cloud types, for the 26-yr period 1971–96. Monthly and seasonal averages were formed for day and night separately. Time series of total-cloud-cover anomalies for individual continents show a large decrease for South America, small decreases for Eurasia and Africa, and no trend for North America. The largest interannual variations (2.7%) are found for Australia, which is strongly influenced by ENSO. The zonal average trends of total cloud cover are positive in the Arctic winter and spring, 60°–80°N, but negative in all seasons at most other latitudes. The global average trend of total cloud cover over land is small, 0.7% decade 1 , offsetting the small positive trend that had been found for the ocean, and resulting in no significant trend for the land–ocean average. Significant regional trends are found for many cloud types. The night trends agree with day trends for total cloud cover and for all cloud types except cumulus. Cirrus trends are generally negative over all continents. A previously reported decline in total cloud cover over China and its neighbors appears to be largely attributable to high and middle clouds. Global trends of the cloud types exhibit trade-offs, with convective cloud types increasing at the expense of stratiform clouds, in both the low and middle levels. Interannual variations over Europe, particularly of nimbostratus, are well correlated with the North Atlantic Oscillation; significant correlations are also found across northern Asia. Interannual variations in many parts of the Tropics are well correlated with an ENSO index. Little correlation was found with an index of smoke aerosol, in seven regions of seasonal biomass burning. In the middle latitudes of both hemispheres, seasonal anomalies of cloud cover are positively correlated with surface temperature in winter and negatively correlated in summer, as expected if the direction of causality is from clouds to temperature.


Journal of Climate | 2010

Interannual Variations of Arctic Cloud Types in Relation to Sea Ice

Ryan Eastman; Stephen G. Warren

Abstract Sea ice extent and thickness may be affected by cloud changes, and sea ice changes may in turn impart changes to cloud cover. Different types of clouds have different effects on sea ice. Visual cloud reports from land and ocean regions of the Arctic are analyzed here for interannual variations of total cloud cover and nine cloud types, and their relation to sea ice. Over the high Arctic, cloud cover shows a distinct seasonal cycle dominated by low stratiform clouds, which are much more common in summer than winter. Interannual variations of cloud amounts over the Arctic Ocean show significant correlations with surface air temperature, total sea ice extent, and the Arctic Oscillation. Low ice extent in September is generally preceded by a summer with decreased middle and precipitating clouds. Following a low-ice September there is enhanced low cloud cover in autumn. Total cloud cover appears to be greater throughout the year during low-ice years. Multidecadal trends from surface observations over ...


Journal of Climate | 2013

A 39-Yr Survey of Cloud Changes from Land Stations Worldwide 1971–2009: Long-Term Trends, Relation to Aerosols, and Expansion of the Tropical Belt

Ryan Eastman; Stephen G. Warren

An archive of land-based, surface-observed cloud reports has been updated and now spans 39 years from 1971 through 2009. Cloud-type information at weather stations is available in individual reports or in longterm, seasonal, and monthly averages. A shift to a new data source and the automation of cloud reporting in some countries has reduced the number of available stations; however, this dataset still represents most of the global land area. Global-average trends of cloud cover suggest a small decline in total cloud cover, on the order of 0.4% per decade. Declining clouds in middle latitudes at high and middle levels appear responsible for this trend. An analysis of zonal cloud cover changes suggests poleward shifts of the jet streams in both hemispheres. The observed displacement agrees with other studies. Changes seen in cloud types associated with the Indian monsoon are consistent with previous work suggesting that increased pollution (black carbon) may be affecting monsoonal precipitation, causing drought in northern India. A similar analysis over northern China does not show an obvious aerosol connection. Past reports claiming a shift from stratiform to cumuliform cloud types over Russia were apparently partially based on spurious data. When the faulty stations are removed, a trade-off of stratiform and cumuliform cloud cover is still observed, but muted, over much of northern Eurasia.


Journal of Climate | 2011

Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954-2008

Ryan Eastman; Stephen G. Warren; Carole J. Hahn

AbstractSynoptic weather observations from ships throughout the World Ocean have been analyzed to produce a climatology of total cloud cover and the amounts of nine cloud types. About 54 million observations contributed to the climatology, which now covers 55 years from 1954 to 2008. In this work, interannual variations of seasonal cloud amounts are analyzed in 10° grid boxes. Long-term variations O(5–10 yr), coherent across multiple latitude bands, remain present in the updated cloud data. A comparison to coincident data on islands indicates that the coherent variations are probably spurious. An exact cause for this behavior remains elusive. The globally coherent variations are removed from the gridbox time series using a Butterworth filter before further analysis.Before removing the spurious variation, the global average time series of total cloud cover over the ocean shows low-amplitude, long-term variations O(2%) over the 55-yr span. High-frequency, year-to-year variation is seen O(1%–2%).Among the cl...


Journal of Climate | 2010

Arctic Cloud Changes from Surface and Satellite Observations

Ryan Eastman; Stephen G. Warren

Abstract Visual cloud reports from land and ocean regions of the Arctic are analyzed for total cloud cover. Trends and interannual variations in surface cloud data are compared to those obtained from Advanced Very High Resolution Radiometer (AVHRR) and Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) satellite data. Over the Arctic as a whole, trends and interannual variations show little agreement with those from satellite data. The interannual variations from AVHRR are larger in the dark seasons than in the sunlit seasons (6% in winter, 2% in summer); however, in the surface observations, the interannual variations for all seasons are only 1%–2%. A large negative trend for winter found in the AVHRR data is not seen in the surface data. At smaller geographic scales, time series of surface- and satellite-observed cloud cover show some agreement except over sea ice during winter. During the winter months, time series of satellite-observed clouds in numerous grid box...


Journal of Climate | 2014

Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and Fog from Surface Observations over Land and Ocean

Ryan Eastman; Stephen G. Warren

AbstractA worldwide climatology of the diurnal cycles of low clouds is obtained from surface observations made eight or four times daily at 3- or 6-h intervals from weather stations and ships. Harmonic fits to the daily cycle are made for 5388 weather stations with long periods of record, and for gridded data on a 5° × 5° or 10° × 10° latitude–longitude grid over land and ocean areas separately.For all cloud types, the diurnal cycle has larger amplitude over land than over ocean, on average by a factor of 2. Diurnal cycles of cloud amount appear to be proprietary to each low cloud type, showing the same cycle regardless of whether that type dominates the diurnal cycle of cloud cover. Stratiform cloud amounts tend to peak near sunrise, while cumuliform amounts peak in the afternoon; however, cumulonimbus amounts peak in the early morning over the ocean. Small latitudinal and seasonal variation is apparent in the phase and amplitude of the diurnal cycles of each type. Land areas show more seasonality compar...


Journal of Climate | 2017

The Change in Low Cloud Cover in a Warmed Climate Inferred from AIRS, MODIS, and ERA-Interim

Daniel T. McCoy; Ryan Eastman; Dennis L. Hartmann; Robert Wood

AbstractDecreases in subtropical low cloud cover (LCC) occur in climate model simulations of global warming. In this study 8-day-averaged observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) spanning 2002–14 are combined with European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis to compute the dependence of the observed variability of LCC on various predictor variables. Large-scale thermodynamic and dynamic predictors of LCC are selected based on insight from large-eddy simulations (LESs) and observational analysis. It is found that increased estimated inversion strength (EIS) is associated with increased LCC. Drying of the free troposphere is associated with decreased LCC. Decreased LCC accompanies subsidence in regions of relatively low EIS; the opposite is found in regions of high EIS. Finally, it is found that increasing sea surface temperature (SST) leads to a decrease in LCC. These results are in keeping with ...


Journal of the Atmospheric Sciences | 2016

Factors Controlling Low-Cloud Evolution over the Eastern Subtropical Oceans: A Lagrangian Perspective Using the A-Train Satellites

Ryan Eastman; Robert Wood

AbstractA Lagrangian technique is developed to sample satellite data to quantify and understand factors controlling temporal changes in low-cloud properties (cloud cover, areal-mean liquid water path, and droplet concentration). Over 62 000 low-cloud scenes over the eastern subtropical/tropical oceans are sampled using the A-Train satellites. Horizontal wind fields at 925 hPa from the ERA-Interim are used to compute 24-h, two-dimensional, forward, boundary layer trajectories with trajectory locations starting on the CloudSat/CALIPSO track. Cloud properties from MODIS and AMSR-E are sampled at the trajectory start and end points, allowing for direct measurement of the temporal cloud evolution. The importance of various controls (here, boundary layer depth, lower-tropospheric stability, and precipitation) on cloud evolution is evaluated by comparing cloud evolution for different initial values of these controls. Viewing angle biases are removed and cloud anomalies (diurnal and seasonal cycles removed) are u...


Journal of the Atmospheric Sciences | 2017

The Subtropical Stratocumulus-Topped Planetary Boundary Layer: A Climatology and the Lagrangian Evolution

Ryan Eastman; Robert Wood; Kuan Ting O

AbstractPrior work has shown that deeper planetary boundary layers (PBLs) are associated with cloud breakup and reduced droplet concentration in subtropical stratocumulus cloud decks, motivating a need for a thorough understanding of PBL mechanics. Here, 169 000 boundary layer trajectories are calculated in four eastern subtropical ocean basins following reanalysis winds at 925 mb (1 mb = 1 hPa). These trajectories combined with a twice-daily cloud-top-height-inferred PBL depth product allow for a comprehensive Lagrangian analysis of the stratocumulus (Sc)-topped PBL as the cloud deck transitions from Sc to trade cumulus (Cu). Month-to-month variations of this PBL product are strongly positively correlated with an independent PBL product derived from GPS radio occultation.A climatology shows the PBL deepening offshore in every region. The yearly cycle of PBL depth varies in opposition to the yearly cycle of lower-tropospheric stability (LTS), but high-frequency variation between LTS and PBL depth is more ...


Journal of the Atmospheric Sciences | 2016

Time Scales of Clouds and Cloud-Controlling Variables in Subtropical Stratocumulus from a Lagrangian Perspective

Ryan Eastman; Robert Wood; Christopher S. Bretherton

AbstractThe Lagrangian evolution of cloud cover and cloud-controlling variables is well approximated using red noise processes with different autocorrelation time scales for each variable. Trajectories within the subtropical marine boundary layer are generated using winds from ECMWF Re-Analysis data for low cloud decks in four eastern subtropical ocean basins. Cloud cover, liquid water path, and boundary layer depth are sampled at 12-h intervals using A-Train satellites, and droplet concentration is sampled every 24 h. Lower-tropospheric stability and vertical velocity are sampled concurrently using reanalysis data. Samples are converted to seasonal and diurnal anomalies. Data are spatially averaged over a range of length scales. The e-folding decay times τ for autocorrelation are calculated for each variable based on lag times of 12, 24, 36, and 48 h. Using lag 24 h and an averaging radius of 100 km, τ ≈ 15–17 h for liquid water path and vertical velocity, τ ≈ 19 h for cloud cover, τ ≈ 24–25 h for bounda...

Collaboration


Dive into the Ryan Eastman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Wood

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Carole J. Hahn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Edward Luke

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Freeman

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jay H. Lawrimore

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge