Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan J. Lowe is active.

Publication


Featured researches published by Ryan J. Lowe.


Nature | 2017

Global warming and recurrent mass bleaching of corals

Terry P. Hughes; James T. Kerry; Mariana Álvarez-Noriega; Jorge G. Álvarez-Romero; Kristen D. Anderson; Andrew Baird; Russell C. Babcock; Maria Beger; David R. Bellwood; Ray Berkelmans; Tom C. L. Bridge; Ian R. Butler; Maria Byrne; Neal E. Cantin; Steeve Comeau; Sean R. Connolly; Graeme S. Cumming; Steven J. Dalton; Guillermo Diaz-Pulido; C. Mark Eakin; Will F. Figueira; James P. Gilmour; Hugo B. Harrison; Scott F. Heron; Andrew S. Hoey; Jean Paul A. Hobbs; Mia O. Hoogenboom; Emma V. Kennedy; Chao-Yang Kuo; Janice M. Lough

During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


BioScience | 2012

The Central Role of Dispersal in the Maintenance and Persistence of Seagrass Populations

Gary A. Kendrick; Michelle Waycott; Tim J. B. Carruthers; Marion L. Cambridge; Renae Hovey; Siegfried L. Krauss; Paul S. Lavery; Donald H. Les; Ryan J. Lowe; Oriol Mascaró i Vidal; Jillian Lean Sim Ooi; Robert J. Orth; David O. Rivers; Leonardo Ruiz-Montoya; Elizabeth A. Sinclair; John Statton; Jent Kornelis van Dijk; Jennifer J. Verduin

Global seagrass losses parallel significant declines observed in corals and mangroves over the past 50 years. These combined declines have resulted in accelerated global losses to ecosystem services in coastal waters. Seagrass meadows can be extensive (hundreds of square kilometers) and long-lived (thousands of years), with the meadows persisting predominantly through vegetative (clonal) growth. They also invest a large amount of energy in sexual reproduction. In this article, we explore the role that sexual reproduction, pollen, and seed dispersal play in maintaining species distributions, genetic diversity, and connectivity among seagrass populations. We also address the relationship between long-distance dispersal, genetic connectivity, and the maintenance of genetic diversity that may enhance resilience to stresses associated with seagrass loss. Our reevaluation of seagrass dispersal and recruitment has altered our perception of the importance of long-distance dispersal and has revealed extensive dispersal at scales much larger than was previously thought possible.


Journal of Physical Oceanography | 2009

Wave-Driven Circulation of a Coastal Reef–Lagoon System

Ryan J. Lowe; James L. Falter; Stephen G. Monismith; Marlin J. Atkinson

Abstract The response of the circulation of a coral reef system in Kaneohe Bay, Hawaii, to incident wave forcing was investigated using field data collected during a 10-month experiment. Results from the study revealed that wave forcing was the dominant mechanism driving the circulation over much of Kaneohe Bay. As predicted theoretically, wave setup generated near the reef crest resulting from wave breaking established a pressure gradient that drove flow over the reef and out of the two reef channels. Maximum reef setup was found to be roughly proportional to the offshore wave energy flux above a threshold root-mean-square wave height of 0.7 m (at which height setup was negligible). On the reef flat, the wave-driven currents increased approximately linearly with incident wave height; however, the magnitude of these currents was relatively weak (typically <20 cm s−1) because of (i) the mild fore-reef slope of Kaneohe Bay that reduced setup resulting from a combination of frictional wave damping and its re...


Journal of Geophysical Research | 2012

The dynamics of infragravity wave transformation over a fringing reef

Andrew Pomeroy; Ryan J. Lowe; Graham Symonds; Ap van Dongeren; Christine Moore

A 3 week field study was conducted to investigate the dynamics of low-frequency (infragravity) wave motions over a fringing reef at Ningaloo Reef, Western Australia. Short-period wave motions (0.04–0.2 Hz) were observed to dissipate on the reef crest beyond which infragravity wave motions (0.004–0.04 Hz) gradually dominated toward the lagoon. However, both the short waves and the infragravity waves were relatively small (both <0.3 m) on the reef flat owing to the shallow water depth (<2 m). The results revealed that the surf zone generation of free infragravity wave motions on the steep (?1:20) fore-reef slope was dominated by breakpoint forcing (as opposed to shoaling bound waves), which was also supported by detailed numerical simulations of the generation process. This is consistent with theory suggesting the efficiency of the breakpoint forcing mechanism should be high in this steep-slope regime. Shoreward propagating infragravity waves traveled across the reef but were damped by bottom friction dissipation; however, this was at a rate much smaller than experienced by the residual short waves. With these rates of frictional dissipation also strongly dependent on the water depth over the reef, the infragravity wave heights increased at higher water levels and hence were strongly modulated by the tide. Due to the strong dissipation of infragravity waves over this wide and shallow reef that is hydraulically rough, any seaward propagating infragravity waves that reflected at the shoreline were small, leading to the dominance of progressive (shoreward propagating) infragravity wave motions throughout the reef and lagoon.


Science | 2018

Spatial and temporal patterns of mass bleaching of corals in the Anthropocene

Terry P. Hughes; Kristen D. Anderson; Sean R. Connolly; Scott F. Heron; James T. Kerry; Janice M. Lough; Andrew Baird; Julia K. Baum; Michael L. Berumen; Tom C. L. Bridge; Danielle C. Claar; C. Mark Eakin; James P. Gilmour; Nicholas A. J. Graham; Hugo B. Harrison; Jean-Paul A. Hobbs; Andrew S. Hoey; Mia O. Hoogenboom; Ryan J. Lowe; Malcolm T. McCulloch; John M. Pandolfi; Morgan S. Pratchett; Verena Schoepf; Gergely Torda; Shaun K. Wilson

Not enough time for recovery Coral bleaching occurs when stressful conditions result in the expulsion of the algal partner from the coral. Before anthropogenic climate warming, such events were relatively rare, allowing for recovery of the reef between events. Hughes et al. looked at 100 reefs globally and found that the average interval between bleaching events is now less than half what it was before. Such narrow recovery windows do not allow for full recovery. Furthermore, warming events such as El Niño are warmer than previously, as are general ocean conditions. Such changes are likely to make it more and more difficult for reefs to recover between stressful events. Science, this issue p. 80 Coral reefs in the present day have less time than in earlier periods to recover from bleaching events. Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


PLOS ONE | 2013

Physical and Biological Controls on the Carbonate Chemistry of Coral Reef Waters: Effects of Metabolism, Wave Forcing, Sea Level, and Geomorphology

James L. Falter; Ryan J. Lowe; Zhenlin Zhang; Malcolm T. McCulloch

We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2.


Annual Review of Marine Science | 2015

Oceanic Forcing of Coral Reefs

Ryan J. Lowe; James L. Falter

Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.


McMahon, K., van Dijk, K-J, Ruiz-Montoya, L., Kendrick, G.A., Krauss, S.L., Waycott, M., Verduin, J. <http://researchrepository.murdoch.edu.au/view/author/Verduin, Jennifer.html>, Lowe, R., Statton, J., Brown, E. and Duarte, C. (2014) The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences, 281 (1795). p. 20140878. | 2014

The movement ecology of seagrasses

Kathryn McMahon; Kor-jent van Dijk; Leonardo Ruiz-Montoya; Gary A. Kendrick; Siegfried L. Krauss; Michelle Waycott; Jennifer J. Verduin; Ryan J. Lowe; John Statton; Eloise Brown; Carlos M. Duarte

A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.


Journal of Geophysical Research | 2012

Seasonal coupling and de‐coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia

James L. Falter; Ryan J. Lowe; Marlin J. Atkinson; Pascale Cuet

Rates of net production, net calcification, and nutrient uptake were measured in a coral-dominated reef flat community on Ningaloo Reef in northwestern Australia under seasonally minimum and maximum light levels. Daily integrated light decreased twofold while water temperatures remained relatively constant increasing by only 1°C on average from summer to winter. Rates of daily community gross primary production (GPP) were only 33% ± 9% higher in summer than in winter (1400 ± 70 versus 1050 ± 60 mmol C m−2 d−1), far less than the twofold seasonal changes reported for most shallow reef communities. Rates of daily community net calcification (Gnet) were not significantly different between seasons (190 ± 40 mmol CaCO3 m−2 d−1 in summer versus 200 ± 10 mmol CaCO3 m−2 d−1 in winter). The average rate of total nitrogen uptake (dissolved + particulate) was also not significantly different between summer and winter (8.3 ± 3.8 versus 6.6 ± 3.4 mmol N m−2 d−1, respectively), despite evidence of sporadically high nitrate uptake in both seasons. In summer, rates of hourly net calcification (gnet) were linearly correlated with diurnal changes in net production, pH, and aragonite saturation state (Ωar); and were mostly correlated with light except at mid-day under heavy cloud cover. However, in winter,gnet was independent of diurnal changes in light, net production, pH, and Ωar indicating that the reef flat community had possibly reached a threshold above which rates of net calcification were insensitive to diurnal changes in their environment.


Journal of Geophysical Research | 2010

Morphological constraints to wave-driven circulation in coastal reef-lagoon systems: A numerical study

Ryan J. Lowe; Colin Hart; Charitha Pattiaratchi

[1] The response of the wave‐driven circulation within coastally bounded reef‐lagoon systems to varying lagoon and channel morphology was investigated using a two‐ dimensional coupled wave‐circulation numerical model. Numerical experiments were conducted using a series of coastal reefs that incorporated a wide range of different lagoon depths and channel widths. With the morphology of both the reef (forereef and reef flat) and incident wave forcing held constant, the wave‐driven circulation was found to increase substantially as dimensionless reef morphology parameters characterizing the relative lagoon depth and channel width were each independently increased. Analysis of the wave setup fields revealed that this increased flow was due to an enhancement of the cross‐reef water level gradient, resulting from a sharp reduction in the lagoon setup as the frictional resistance on the lagoon‐channel return flow was diminished. This follows similar trends observed in existing field and laboratory studies of wave‐driven reef flows. Analysis of flushing time scales computed for each reef‐lagoon geometry predicted the existence of optimal dimensionless lagoon depths and channel widths for a reef system, to establish maximal coastal flushing. Overall, the circulation and flushing of coastal reef‐lagoon systems was found to be largely controlled by the particular morphology of the lagoon and channel region rather than solely by the morphology of the forereef and reef flat that has been the primary focus of analytical models developed to predict wave setup and circulation on reefs.

Collaboration


Dive into the Ryan J. Lowe's collaboration.

Top Co-Authors

Avatar

James L. Falter

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Graham Symonds

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Gregory Ivey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jeff E. Hansen

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Andrew Pomeroy

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Nicole L. Jones

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenlin Zhang

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Stephen G. Monismith

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Charitha Pattiaratchi

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge