Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan J.O. Dowling is active.

Publication


Featured researches published by Ryan J.O. Dowling.


Cancer Research | 2007

Metformin Inhibits Mammalian Target of Rapamycin–Dependent Translation Initiation in Breast Cancer Cells

Ryan J.O. Dowling; Mahvash Zakikhani; I. George Fantus; Michael Pollak; Nahum Sonenberg

Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.


Science | 2010

mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs

Ryan J.O. Dowling; Ivan Topisirovic; Tommy Alain; Michael Bidinosti; Bruno D. Fonseca; Emmanuel Petroulakis; Xiaoshan Wang; Ola Larsson; Anand Selvaraj; Yi Liu; Sara C. Kozma; George Thomas; Nahum Sonenberg

Proliferation Control The protein complex mTORC1, which contains the protein kinase known as mammalian target of rapamycin, is an important regulator of cell proliferation and cell size. Among many targets, mTORC1 phosphorylates the eukaryotic translation initiation factor eIF4E–binding proteins (4E-BPs), thus controlling translation of proteins that regulate proliferation. Dowling et al. (p. 1172) used mice lacking expression of the 4E-BPs to show that these proteins contribute to mTORC1s activation of cell proliferation, but are dispensable for the effects of mTORC1 on cell growth. The latter required another mTORC1 target—the ribosomal protein S6 kinase. mTORC1 inhibitors are being explored as potential anticancer agents, and the presence of 4E-BPs was necessary for mTORC1 inhibitors to reduce the number and size of colonies formed by transformed mouse cells. Control of cell proliferation and cell size is separately regulated in mammals. The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogen and nutrient signals to control cell proliferation and cell size. Hence, mTORC1 is implicated in a large number of human diseases—including diabetes, obesity, heart disease, and cancer—that are characterized by aberrant cell growth and proliferation. Although eukaryotic translation initiation factor 4E–binding proteins (4E-BPs) are critical mediators of mTORC1 function, their precise contribution to mTORC1 signaling and the mechanisms by which they mediate mTORC1 function have remained unclear. We inhibited the mTORC1 pathway in cells lacking 4E-BPs and analyzed the effects on cell size, cell proliferation, and cell cycle progression. Although the 4E-BPs had no effect on cell size, they inhibited cell proliferation by selectively inhibiting the translation of messenger RNAs that encode proliferation-promoting proteins and proteins involved in cell cycle progression. Thus, control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.


Biochimica et Biophysica Acta | 2010

Dissecting the role of mTOR: Lessons from mTOR inhibitors

Ryan J.O. Dowling; Ivan Topisirovic; Bruno D. Fonseca; Nahum Sonenberg

Recent years have observed significant advances in our understanding of how the serine/threonine kinase target of rapamycin (TOR) controls key cellular processes such as cell survival, growth and proliferation. Consistent with its role in cell proliferation, the mTOR pathway is frequently hyperactivated in a number of human malignancies and is thus considered to be an attractive target for anti-cancer therapy. Rapamycin and its analogs (rapalogs) function as allosteric inhibitors of mTORC1 and are currently used in the treatment of advanced renal cell carcinoma. Rapamycin and its derivatives bind to the small immunophilin FKBP12 to inhibit mTORC1 signalling through a poorly understood mechanism. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Several novel active-site inhibitors of mTOR, which inhibit both mTORC1 and mTORC2, were developed in the last year. In this manuscript, we provide a brief outline of our current understanding of the mTOR signalling pathway and review the molecular underpinnings of the action of rapamycin and novel active-site mTOR inhibitors as well as potential advantages and caveats associated with the use of these drugs in the treatment of cancer.


Nature | 2008

Translational control of the innate immune response through IRF-7

Rodney Colina; Mauro Costa-Mattioli; Ryan J.O. Dowling; Maritza Jaramillo; Lee-Hwa Tai; Caroline J. Breitbach; Yvan Martineau; Ola Larsson; Liwei Rong; Yuri V. Svitkin; Andrew P. Makrigiannis; John C. Bell; Nahum Sonenberg

Transcriptional activation of cytokines, such as type-I interferons (interferon (IFN)-α and IFN-β), constitutes the first line of antiviral defence. Here we show that translational control is critical for induction of type-I IFN production. In mouse embryonic fibroblasts lacking the translational repressors 4E-BP1 and 4E-BP2, the threshold for eliciting type-I IFN production is lowered. Consequently, replication of encephalomyocarditis virus, vesicular stomatitis virus, influenza virus and Sindbis virus is markedly suppressed. Furthermore, mice with both 4E- and 4E-BP2 genes (also known as Eif4ebp1 and Eif4ebp2, respectively) knocked out are resistant to vesicular stomatitis virus infection, and this correlates with an enhanced type-I IFN production in plasmacytoid dendritic cells and the expression of IFN-regulated genes in the lungs. The enhanced type-I IFN response in 4E-BP1-/- 4E-BP2-/- double knockout mouse embryonic fibroblasts is caused by upregulation of interferon regulatory factor 7 (Irf7) messenger RNA translation. These findings highlight the role of 4E-BPs as negative regulators of type-I IFN production, via translational repression of Irf7 mRNA.


BMC Medicine | 2011

Understanding the benefit of metformin use in cancer treatment

Ryan J.O. Dowling; Pamela J. Goodwin; Vuk Stambolic

Biguanides have been developed for the treatment of hyperglycemia and type 2 diabetes. Recently, metformin, the most widely prescribed biguanide, has emerged as a potential anticancer agent. Epidemiological, preclinical and clinical evidence supports the use of metformin as a cancer therapeutic. The ability of metformin to lower circulating insulin may be particularly important for the treatment of cancers known to be associated with hyperinsulinemia, such as those of the breast and colon. Moreover, metformin may exhibit direct inhibitory effects on cancer cells by inhibiting mammalian target of rapamycin (mTOR) signaling and protein synthesis. The evidence supporting a role for metformin in cancer therapy and its potential molecular mechanisms of action are discussed.


Cancer Prevention Research | 2008

The Effects of Adiponectin and Metformin on Prostate and Colon Neoplasia Involve Activation of AMP-Activated Protein Kinase

Mahvash Zakikhani; Ryan J.O. Dowling; Nahum Sonenberg; Michael Pollak

Population studies provide evidence that obesity and insulin resistance are associated not only with elevated serum insulin levels and reduced serum adiponectin levels but also with increased risk of aggressive prostate and colon cancer. We show here that adiponectin activates AMP-activated protein kinase (AMPK) in colon (HT-29) and prostate (PC-3) cancer cells. These results are consistent with prior observations in myocytes, but we show that in epithelial cancer cells AMPK activation is associated with reduction in mammalian target of rapamycin activation as estimated by Ser2448 phosphorylation, with reduction in p70S6 kinase activation as estimated by Thr389 phosphorylation, with ribosomal protein S6 activation as estimated by Ser235/236 phosphorylation, with reduction in protein translation as estimated by [35S]methionine incorporation, and with growth inhibition. Adiponectin-induced growth inhibition is significantly attenuated when AMPK level is reduced using small interfering RNA, indicating that AMPK is involved in mediating the antiproliferative action of this adipokine. Thus, adiponectin has the characteristics of a AMPK-dependent growth inhibitor that is deficient in obesity, and this may contribute to the adverse effects of obesity on neoplastic disease. Furthermore, metformin was observed to activate AMPK and to have growth inhibitory actions on prostate and colon cancer cells, suggesting that this compound may be of particular value in attenuating the adverse effects of obesity on neoplasia.


Journal of Molecular Endocrinology | 2012

Metformin in cancer: translational challenges.

Ryan J.O. Dowling; Saroj Niraula; Vuk Stambolic; Pamela J. Goodwin

The anti-diabetic drug metformin is rapidly emerging as a potential anti-cancer agent. Metformin, effective in treating type 2 diabetes and the insulin resistance syndromes, improves insulin resistance by reducing hepatic gluconeogenesis and by enhancing glucose uptake by skeletal muscle. Epidemiological studies have consistently associated metformin use with decreased cancer incidence and cancer-related mortality. Furthermore, numerous preclinical and clinical studies have demonstrated anti-cancer effects of metformin, leading to an explosion of interest in evaluating this agent in human cancer. The effects of metformin on circulating insulin levels indicate a potential efficacy towards cancers associated with hyperinsulinaemia; however, metformin may also directly inhibit tumour growth. In this review, we describe the mechanism of action of metformin and summarise the epidemiological, clinical and preclinical evidence supporting a role for metformin in the treatment of cancer. In addition, the challenges associated with translating preclinical results into therapeutic benefit in the clinical setting will be discussed.


Science | 2013

Nuclear PTEN Controls DNA Repair and Sensitivity to Genotoxic Stress

Christian Bassi; J. Ho; Tharan Srikumar; Ryan J.O. Dowling; Chiara Gorrini; S. J. Miller; Tak W. Mak; Benjamin G. Neel; B. Raught; Vuk Stambolic

PTEN Variations The product of the tumor suppressor gene phosphate and tensin homolog on chromosome ten (PTEN) is a lipid and protein phosphatase that regulates important cellular processes, including growth, survival, and metabolism (see the Perspective by Leslie and Brunton). Though PTEN is best known for effects on the phosphatidylnositol 3-kinase (PI3K) signaling pathway, the PTEN protein is also found in the nucleus. Bassi et al. (p. 395) found that PTENs presence in the nucleus was regulated in response to covalent modification of the protein by SUMOylation and phosphorylation. Cells lacking nuclear PTEN showed increased sensitivity to DNA damage and underwent cell death if the PI3K pathway was also inhibited. Hopkins et al. (p. 399, published online 6 June) discovered an alternative translation start site in human PTEN messenger RNA that allowed expression of a protein, PTEN-Long, with about 170 extra amino acids. The unusual enzyme was released from cells and then taken up into other cells. In a mouse tumor model, uptake of the enzyme inhibited the PI3K pathway and inhibited tumor growth. The phosphatase PTEN works as a lipid phosphatase in the cytoplasm and a protein phosphatase in the nucleus. [Also see Perspective by Leslie and Brunton] Loss of function of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO, small ubiquitin-like modifier) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, whereas PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small-molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors.


Nature Immunology | 2012

Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E

Barbara Herdy; Maritza Jaramillo; Yuri V. Svitkin; Amy B. Rosenfeld; Mariko Kobayashi; Derek Walsh; Tommy Alain; Polen Sean; Nathaniel Robichaud; Ivan Topisirovic; Luc Furic; Ryan J.O. Dowling; Annie Sylvestre; Liwei Rong; Rodney Colina; Mauro Costa-Mattioli; Jörg H. Fritz; Martin Olivier; Earl G. Brown; Ian Mohr; Nahum Sonenberg

Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-β (IFN-β). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.


BioDrugs | 2009

Current Status and Challenges Associated with Targeting mTOR for Cancer Therapy

Ryan J.O. Dowling; Michael Pollak; Nahum Sonenberg

The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival, and proliferation. Inappropriate activation of PI3K/Akt/mTOR signaling can promote a cellular environment that is favorable for transformation. In fact, dysregulation of this pathway, as a result of genetic mutations and amplifications, is implicated in a variety of human cancers. Therefore, mTOR has emerged as a key target for the treatment of cancer, particularly in the treatment of tumors that exhibit increased mTOR signaling as a result of genetic lesions. The immunosuppressant sirolimus (rapamycin) directly inhibits mTOR activity and suppresses the growth of cancer cells in vitro and in vivo. As a result, a number of sirolimus derivatives have been developed as anti-cancer therapies, and these compounds are currently under investigation in phase I–III clinical trials. In this review, we summarize the use of sirolimus derivatives in clinical trials and address some of the challenges associated with targeting mTOR for the treatment of human cancer.

Collaboration


Dive into the Ryan J.O. Dowling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan J. Done

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge