Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasvinder Atwal is active.

Publication


Featured researches published by Jasvinder Atwal.


Nature | 2012

A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline

Thorlakur Jonsson; Jasvinder Atwal; Stacy Steinberg; Jon Snaedal; Palmi V. Jonsson; Sigurbjorn Bjornsson; Hreinn Stefansson; Patrick Sulem; Daniel F. Gudbjartsson; Janice Maloney; Kwame Hoyte; Amy Gustafson; Yichin Liu; Yanmei Lu; Tushar Bhangale; Robert R. Graham; Johanna Huttenlocher; Gyda Bjornsdottir; Ole A. Andreassen; Erik G. Jönsson; Aarno Palotie; Timothy W. Behrens; Olafur T. Magnusson; Augustine Kong; Unnur Thorsteinsdottir; Ryan J. Watts; Kari Stefansson

The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.


Science | 2008

PirB is a functional receptor for myelin inhibitors of axonal regeneration.

Jasvinder Atwal; Julie Pinkston-Gosse; Josh Syken; Scott Stawicki; Yan Wu; Carla J. Shatz; Marc Tessier-Lavigne

A major barrier to regenerating axons after injury in the mammalian central nervous system is an unfavorable milieu. Three proteins found in myelin—Nogo, MAG, and OMgp—inhibit axon regeneration in vitro and bind to the glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, genetic deletion of NgR has only a modest disinhibitory effect, suggesting that other binding receptors for these molecules probably exist. With the use of expression cloning, we have found that paired immunoglobulin-like receptor B (PirB), which has been implicated in nervous system plasticity, is a high-affinity receptor for Nogo, MAG, and OMgp. Interfering with PirB activity, either with antibodies or genetically, partially rescues neurite inhibition by Nogo66, MAG, OMgp, and myelin in cultured neurons. Blocking both PirB and NgR activities leads to near-complete release from myelin inhibition. Our results implicate PirB in mediating regeneration block, identify PirB as a potential target for axon regeneration therapies, and provide an explanation for the similar enhancements of visual system plasticity in PirB and NgR knockout mice.


Science Translational Medicine | 2011

Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target

Y. Joy Yu; Yin Zhang; Margaret Kenrick; Kwame Hoyte; Wilman Luk; Yanmei Lu; Jasvinder Atwal; J. Michael Elliott; Saileta Prabhu; Ryan J. Watts; Mark S. Dennis

Brain uptake of a therapeutic bispecific antibody by receptor-mediated transcytosis is enhanced by reducing the antibody’s affinity for the transferrin receptor. A Trojan Horse Antibody Scales a Mighty Fortress As impenetrable as the walls of ancient Troy, the tight endothelial cell layer of the blood-brain barrier (BBB) allows only a few select molecules to enter the brain. Unfortunately, this highly effective fortress blocks passage of therapeutic antibodies, limiting their usefulness for treating diseases of the brain and central nervous system. Enter Ryan Watts and his team at Genentech with their ambitious dual goal of making a therapeutic antibody against a popular Alzheimer’s disease drug target, the enzyme β-secretase (BACE1), and developing a strategy to boost the amount of this antibody that enters the brain (Atwal et al. and Yu et al.). BACE1 processes the amyloid precursor protein into amyloid-β (Aβ) peptides including those molecular species that aggregate to form the amyloid plaques found in the brains of Alzheimer’s disease patients. By blocking the activity of BACE1, BACE1 inhibitors should reduce production of the aggregation-prone Aβ peptides, thus decreasing amyloid plaque formation and slowing Alzheimer’s disease progression. Although small-molecule inhibitors of BACE1 have been developed and can readily cross the BBB because of their small size, they do not show sufficient specificity and hence may have toxic side effects. Watts envisaged that a better approach to blocking BACE1 activity might be passive immunization with a highly specific anti-BACE1 antibody. So his team engineered an anti-BACE1 antibody that bound to BACE1 with exquisite specificity and blocked its activity (Atwal et al.). The investigators then showed that this antibody could reduce production of aggregation-prone Aβ peptides in cultured primary neurons. Next, Watts and his colleagues injected the antibody into mice and monkeys and demonstrated a sustained decrease in the concentrations of Aβ peptide in the circulation of these animals and to a lesser extent in the brain. The researchers knew that they must find a way to increase the amount of antibody getting into the brain to reduce Aβ peptide concentrations in the brain sufficiently to obtain a therapeutic effect. So Watts teamed up with fellow Genentechie, Mark Dennis, and they devised an ingenious solution (Yu et al.). The Genentech researchers knew that high-affinity antibodies against the transferrin receptor might be able to cross the BBB using a natural process called receptor-mediated transcytosis. However, when they tested their antibody, they found that although it readily bound to the BBB, it could not detach from the transferrin receptor and hence was not released into the brain. So, they made a series of lower-affinity mouse anti-transferrin receptor antibodies and found variants that could cross the BBB by receptor-mediated transcytosis and were released into the mouse brain once they got across the endothelial cell layer. Next, they designed a bispecific mouse antibody with one arm comprising a low-affinity anti-transferrin receptor antibody and the other arm comprising the high-affinity anti-BACE1 antibody that had shown therapeutic promise in their earlier studies. They demonstrated that their bispecific antibody was able to cross the BBB and reach therapeutic concentrations in the mouse brain. They then showed that this bispecific antibody was substantially more effective at reducing Aβ peptide concentrations in the mouse brain compared to the monospecific anti-BACE1 antibody. This elegant pair of papers not only demonstrates the therapeutic potential of an anti-BACE1 antibody for treating Alzheimer’s disease but also provides a strategy worthy of the ancient Greeks that could be applied to other therapeutic antibodies that require safe passage into the human brain. Monoclonal antibodies have therapeutic potential for treating diseases of the central nervous system, but their accumulation in the brain is limited by the blood-brain barrier (BBB). Here, we show that reducing the affinity of an antibody for the transferrin receptor (TfR) enhances receptor-mediated transcytosis of the anti-TfR antibody across the BBB into the mouse brain where it reaches therapeutically relevant concentrations. Anti-TfR antibodies that bind with high affinity to TfR remain associated with the BBB, whereas lower-affinity anti-TfR antibody variants are released from the BBB into the brain and show a broad distribution 24 hours after dosing. We designed a bispecific antibody that binds with low affinity to TfR and with high affinity to the enzyme β-secretase (BACE1), which processes amyloid precursor protein into amyloid-β (Aβ) peptides including those associated with Alzheimer’s disease. Compared to monospecific anti-BACE1 antibody, the bispecific antibody accumulated in the mouse brain and led to a greater reduction in brain Aβ after a single systemic dose. TfR-facilitated transcytosis of this bispecific antibody across the BBB may enhance its potency as an anti-BACE1 therapy for treating Alzheimer’s disease.


Science Translational Medicine | 2011

A Therapeutic Antibody Targeting BACE1 Inhibits Amyloid-β Production in Vivo

Jasvinder Atwal; Yongmei Chen; Cecilia Chiu; Deborah L. Mortensen; William J. Meilandt; Yichin Liu; Christopher E. Heise; Kwame Hoyte; Wilman Luk; Yanmei Lu; Kun Peng; Ping Wu; Lionel Rouge; Yingnan Zhang; Robert A. Lazarus; Kimberly Scearce-Levie; Weiru Wang; Yan Wu; Marc Tessier-Lavigne; Ryan J. Watts

A human antibody inhibits BACE1 activity and Aβ peptide production in cultured neurons and in the central nervous system of mouse and monkey. A Trojan Horse Antibody Scales a Mighty Fortress As impenetrable as the walls of ancient Troy, the tight endothelial cell layer of the blood-brain barrier (BBB) allows only a few select molecules to enter the brain. Unfortunately, this highly effective fortress blocks passage of therapeutic antibodies, limiting their usefulness for treating diseases of the brain and central nervous system. Enter Ryan Watts and his team at Genentech with their ambitious dual goal of making a therapeutic antibody against a popular Alzheimer’s disease drug target, the enzyme β-secretase (BACE1), and developing a strategy to boost the amount of this antibody that enters the brain (Atwal et al. and Yu et al.). BACE1 processes the amyloid precursor protein into amyloid-β (Aβ) peptides including those molecular species that aggregate to form the amyloid plaques found in the brains of Alzheimer’s disease patients. By blocking the activity of BACE1, BACE1 inhibitors should reduce production of the aggregation-prone Aβ peptides, thus decreasing amyloid plaque formation and slowing Alzheimer’s disease progression. Although small-molecule inhibitors of BACE1 have been developed and can readily cross the BBB because of their small size, they do not show sufficient specificity and hence may have toxic side effects. Watts envisaged that a better approach to blocking BACE1 activity might be passive immunization with a highly specific anti-BACE1 antibody. So his team engineered an anti-BACE1 antibody that bound to BACE1 with exquisite specificity and blocked its activity (Atwal et al.). The investigators then showed that this antibody could reduce production of aggregation-prone Aβ peptides in cultured primary neurons. Next, Watts and his colleagues injected the antibody into mice and monkeys and demonstrated a sustained decrease in the concentrations of Aβ peptide in the circulation of these animals and to a lesser extent in the brain. The researchers knew that they must find a way to increase the amount of antibody getting into the brain to reduce Aβ peptide concentrations in the brain sufficiently to obtain a therapeutic effect. So Watts teamed up with fellow Genentechie, Mark Dennis, and they devised an ingenious solution (Yu et al.). The Genentech researchers knew that high-affinity antibodies against the transferrin receptor might be able to cross the BBB using a natural process called receptor-mediated transcytosis. However, when they tested their antibody, they found that although it readily bound to the BBB, it could not detach from the transferrin receptor and hence was not released into the brain. So, they made a series of lower-affinity mouse anti-transferrin receptor antibodies and found variants that could cross the BBB by receptor-mediated transcytosis and were released into the mouse brain once they got across the endothelial cell layer. Next, they designed a bispecific mouse antibody with one arm comprising a low-affinity anti-transferrin receptor antibody and the other arm comprising the high-affinity anti-BACE1 antibody that had shown therapeutic promise in their earlier studies. They demonstrated that their bispecific antibody was able to cross the BBB and reach therapeutic concentrations in the mouse brain. They then showed that this bispecific antibody was substantially more effective at reducing Aβ peptide concentrations in the mouse brain compared to the monospecific anti-BACE1 antibody. This elegant pair of papers not only demonstrates the therapeutic potential of an anti-BACE1 antibody for treating Alzheimer’s disease but also provides a strategy worthy of the ancient Greeks that could be applied to other therapeutic antibodies that require safe passage into the human brain. Reducing production of amyloid-β (Aβ) peptide by direct inhibition of the enzymes that process amyloid precursor protein (APP) is a central therapeutic strategy for treating Alzheimer’s disease. However, small-molecule inhibitors of the β-secretase (BACE1) and γ-secretase APP processing enzymes have shown a lack of target selectivity and poor penetrance of the blood-brain barrier (BBB). Here, we have developed a high-affinity, phage-derived human antibody that targets BACE1 (anti-BACE1) and is anti-amyloidogenic. Anti-BACE1 reduces endogenous BACE1 activity and Aβ production in human cell lines expressing APP and in cultured primary neurons. Anti-BACE1 is highly selective and does not inhibit the related enzymes BACE2 or cathepsin D. Competitive binding assays and x-ray crystallography indicate that anti-BACE1 binds noncompetitively to an exosite on BACE1 and not to the catalytic site. Systemic dosing of mice and nonhuman primates with anti-BACE1 resulted in sustained reductions in peripheral Aβ peptide concentrations. Anti-BACE1 also reduces central nervous system Aβ concentrations in mouse and monkey, consistent with a measurable uptake of antibody across the BBB. Thus, BACE1 can be targeted in a highly selective manner through passive immunization with anti-BACE1, providing a potential approach for treating Alzheimer’s disease. Nevertheless, therapeutic success with anti-BACE1 will depend on improving antibody uptake into the brain.


The Journal of Neuroscience | 2012

An Effector-Reduced Anti-β-Amyloid (Aβ) Antibody with Unique Aβ Binding Properties Promotes Neuroprotection and Glial Engulfment of Aβ

Oskar Adolfsson; Maria Pihlgren; Nicolas Toni; Yvan Varisco; Anna Lucia Buccarello; Katia Antoniello; Sophie Lohmann; Kasia Piorkowska; Valerie Gafner; Jasvinder Atwal; Janice Maloney; Mark J. Chen; Alvin Gogineni; Robby M. Weimer; Deborah L. Mortensen; Michel Friesenhahn; Carole Ho; Robert H. Paul; Andrea Pfeifer; Andreas Muhs; Ryan J. Watts

Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimers disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1–42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP(V717I)/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.


Science Translational Medicine | 2014

Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates

Yu Yj; Jasvinder Atwal; Yingnan Zhang; Raymond K. Tong; Wildsmith Kr; Tan C; Nga Bien-Ly; Hersom M; Janice Maloney; William J. Meilandt; Daniela Bumbaca; Kapil Gadkar; Kwame Hoyte; Wilman Luk; Yanmei Lu; James A. Ernst; Kimberly Scearce-Levie; Jessica Couch; Mark S. Dennis; Ryan J. Watts

Bispecific antibodies engineered to both bind to the primate transferrin receptor and inhibit β-secretase are taken up by the nonhuman primate brain and reduce brain β-amyloid. A Two-Pronged Approach for Central Nervous System Therapeutics The brain has been considered off-limits to antibody therapies because of the blood-brain barrier (BBB), which protects the brain from circulating toxins while selectively transporting essential molecules into the brain. Efforts to use natural transport mechanisms to deliver antibody therapies into the brain have been successful in rodents. Whether a similar approach can be used in primates, including humans, remains unknown. Using bispecific antibodies with one arm binding to the transferrin receptor and the other to an Alzheimer’s disease drug target, we show that therapeutic antibodies can effectively and safely cross the BBB and enter the primate brain, thus paving the way for antibody therapeutics to treat central nervous system diseases in humans. Using therapeutic antibodies that need to cross the blood-brain barrier (BBB) to treat neurological disease is a difficult challenge. We have shown that bispecific antibodies with optimized binding to the transferrin receptor (TfR) that target β-secretase (BACE1) can cross the BBB and reduce brain amyloid-β (Aβ) in mice. Can TfR enhance antibody uptake in the primate brain? We describe two humanized TfR/BACE1 bispecific antibody variants. Using a human TfR knock-in mouse, we observed that anti-TfR/BACE1 antibodies could cross the BBB and reduce brain Aβ in a TfR affinity–dependent fashion. Intravenous dosing of monkeys with anti-TfR/BACE1 antibodies also reduced Aβ both in cerebral spinal fluid and in brain tissue, and the degree of reduction correlated with the brain concentration of anti-TfR/BACE1 antibody. These results demonstrate that the TfR bispecific antibody platform can robustly and safely deliver therapeutic antibody across the BBB in the primate brain.


Journal of Biological Chemistry | 2014

Molecular Mechanisms of Alzheimer Disease Protection by the A673T Allele of Amyloid Precursor Protein

Janice Maloney; Travis W. Bainbridge; Amy Gustafson; Shuo Zhang; Roxanne Kyauk; Pascal Steiner; Marcel van der Brug; Yichin Liu; James A. Ernst; Ryan J. Watts; Jasvinder Atwal

Background: The A673T variant of the amyloid precursor protein (APP) protects against Alzheimer disease (AD). Results: A673T reduces BACE1 processing of APP by decreasing catalytic turnover and reduces amyloid-β(1–42) aggregation. Conclusion: A673T APP protects against AD primarily by reducing Aβ production and also by reducing aggregation. Significance: The biochemical nature of the A673T protective mutation provides insight into AD development. Pathogenic mutations in the amyloid precursor protein (APP) gene have been described as causing early onset familial Alzheimer disease (AD). We recently identified a rare APP variant encoding an alanine-to-threonine substitution at residue 673 (A673T) that confers protection against development of AD (Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., Jönsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012) Nature 488, 96–99). The Ala-673 residue lies within the β-secretase recognition sequence and is part of the amyloid-β (Aβ) peptide cleavage product (position 2 of Aβ). We previously demonstrated that the A673T substitution makes APP a less favorable substrate for cleavage by BACE1. In follow-up studies, we confirm that A673T APP shows reduced cleavage by BACE1 in transfected mouse primary neurons and in isogenic human induced pluripotent stem cell-derived neurons. Using a biochemical approach, we show that the A673T substitution modulates the catalytic turnover rate (Vmax) of APP by the BACE1 enzyme, without affecting the affinity (Km) of the APP substrate for BACE1. We also show a reduced level of Aβ(1–42) aggregation with A2T Aβ peptides, an observation not conserved in Aβ(1–40) peptides. When combined in a ratio of 1:9 Aβ(1–42)/Aβ(1–40) to mimic physiologically relevant mixtures, A2T retains a trend toward slowed aggregation kinetics. Microglial uptake of the mutant Aβ(1–42) peptides correlated with their aggregation level. Cytotoxicity of the mutant Aβ peptides was not dramatically altered. Taken together, our findings demonstrate that A673T, a protective allele of APP, reproducibly reduces amyloidogenic processing of APP and also mildly decreases Aβ aggregation. These effects could together have an additive or even synergistic impact on the risk of developing AD.


Nature Medicine | 2014

A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death

Monica K. Wetzel-Smith; Julie Hunkapiller; Tushar Bhangale; Karpagam Srinivasan; Janice Maloney; Jasvinder Atwal; Susan M. Sa; Murat Yaylaoglu; Oded Foreman; Ward Ortmann; Nisha Rathore; David V. Hansen; Marc Tessier-Lavigne; Richard Mayeux; Margaret A. Pericak-Vance; Jonathan L. Haines; Lindsay A. Farrer; Gerard D. Schellenberg; Alison Goate; Timothy W. Behrens; Carlos Cruchaga; Ryan J. Watts; Robert R. Graham

We have identified a rare coding mutation, T835M (rs137875858), in the UNC5C netrin receptor gene that segregated with disease in an autosomal dominant pattern in two families enriched for late-onset Alzheimers disease and that was associated with disease across four large case-control cohorts (odds ratio = 2.15, Pmeta = 0.0095). T835M alters a conserved residue in the hinge region of UNC5C, and in vitro studies demonstrate that this mutation leads to increased cell death in human HEK293T cells and in rodent neurons. Furthermore, neurons expressing T835M UNC5C are more susceptible to cell death from multiple neurotoxic stimuli, including β-amyloid (Aβ), glutamate and staurosporine. On the basis of these data and the enriched hippocampal expression of UNC5C in the adult nervous system, we propose that one possible mechanism in which T835M UNC5C contributes to the risk of Alzheimers disease is by increasing susceptibility to neuronal cell death, particularly in vulnerable regions of the Alzheimers disease brain.


The Journal of Neuroscience | 2012

Spatially Coordinated Kinase Signaling Regulates Local Axon Degeneration

Mark J. Chen; Janice Maloney; Dara Y. Kallop; Jasvinder Atwal; Stephen Tam; Kristin Baer; Holger Kissel; Joshua S. Kaminker; Joseph W. Lewcock; Robby M. Weimer; Ryan J. Watts

In addition to being a hallmark of neurodegenerative disease, axon degeneration is used during development of the nervous system to prune unwanted connections. In development, axon degeneration is tightly regulated both temporally and spatially. Here, we provide evidence that degeneration cues are transduced through various kinase pathways functioning in spatially distinct compartments to regulate axon degeneration. Intriguingly, glycogen synthase kinase-3 (GSK3) acts centrally, likely modulating gene expression in the cell body to regulate distally restricted axon degeneration. Through a combination of genetic and pharmacological manipulations, including the generation of an analog-sensitive kinase allele mutant mouse for GSK3β, we show that the β isoform of GSK3, not the α isoform, is essential for developmental axon pruning in vitro and in vivo. Additionally, we identify the dleu2/mir15a/16-1 cluster, previously characterized as a regulator of B-cell proliferation, and the transcription factor tbx6, as likely downstream effectors of GSK3β in axon degeneration.


Drug Metabolism and Disposition | 2013

Mechanistic Pharmacokinetic-Pharmacodynamic Modeling of BACE1 Inhibition in Monkeys: Development of a Predictive Model for Amyloid Precursor Protein Processing

Xingrong Liu; Harvey Wong; Kimberly Scearce-Levie; Ryan J. Watts; Melis Coraggio; Young G. Shin; Kun Peng; Kristin Wildsmith; Jasvinder Atwal; Jason Mango; Stephen Schauer; Kelly Regal; Kevin W. Hunt; Allen A. Thomas; Michael Siu; Joseph P. Lyssikatos; Gauri Deshmukh; Cornelis E. C. A. Hop

This study was conducted to determine the pharmacokinetics (PK) and pharmacodynamics (PD) of two novel inhibitors of β-site amyloid precursor protein (APP)–cleaving enzyme (BACE1), GNE-629 [(4S,4a′S,10a′S)-2-amino-8′-(2-fluoropyridin-3-yl)-1-methyl-3′,4′,4a′,10a′-tetrahydro-1′H-spiro[imidazole-4,10′-pyrano[4,3-b]chromen]-5(1H)-one] and GNE-892 [(R)-2-amino-1,3′,3′-trimethyl-7′-(pyrimidin-5-yl)-3′,4′-dihydro-2′H-spiro[imidazole-4,1′-naphthalen]-5(1H)-one], and to develop a PK-PD model to predict in vivo effects based solely on in vitro activity and PK. GNE-629 and GNE-892 concentrations and PD biomarkers including amyloid β (Aβ) in the plasma and cerebrospinal fluid (CSF), and secreted APPβ (sAPPβ) and secreted APPα (sAPPα) in the CSF were measured after a single oral administration of GNE-629 (100 mg/kg) or GNE-892 (30 or 100 mg/kg) in cynomolgus monkeys. A mechanistic PK-PD model was developed to simultaneously characterize the plasma Aβ and CSF Aβ, sAPPα, and sAPPβ using GNE-629 in vivo data. This model was used to predict the in vivo effects of GNE-892 after adjustments based on differences in in vitro cellular activity and PK. The PK-PD model estimated GNE-629 CSF and free plasma IC50 of 0.0033 μM and 0.065 μM, respectively. These differences in CSF and free plasma IC50 suggest that different mechanisms are involved in Aβ formation in these two compartments. The predicted in vivo effects for GNE-892 using the PK-PD model were consistent with the observed data. In conclusion, a PK-PD model was developed to mechanistically describe the effects of BACE1 inhibition on Aβ, sAPPβ, and sAPPα in the CSF, and Aβ in the plasma. This model can be used to prospectively predict in vivo effects of new BACE1 inhibitors using just their in vitro activity and PK data.

Collaboration


Dive into the Jasvinder Atwal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Tessier-Lavigne

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge