Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan McGorty is active.

Publication


Featured researches published by Ryan McGorty.


Cell | 2016

Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks

Peter Bieling; Tai-De Li; Julian Weichsel; Ryan McGorty; Pamela Jreij; Bo Huang; Daniel A. Fletcher; R. Dyche Mullins

Branched actin networks--created by the Arp2/3 complex, capping protein, and a nucleation promoting factor--generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful.


Optics Letters | 2014

Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy

Ryan McGorty; Joerg Schnitzbauer; Wei Zhang; Bo Huang

Single-molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single-molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive index mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here we show a method to obtain accurate, depth-dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth-dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 μm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane.


Optics Express | 2015

Open-top selective plane illumination microscope for conventionally mounted specimens

Ryan McGorty; Harrison Liu; Daichi Kamiyama; Zhiqiang Dong; Su Guo; Bo Huang

We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips.


Optical Nanoscopy | 2013

Active microscope stabilization in three dimensions using image correlation

Ryan McGorty; Daichi Kamiyama; Bo Huang

BackgroundSuper-resolution microscopy techniques are often extremely susceptible to sample drift due to their high spatial resolution and the long time needed for data acquisition. While several techniques for stabilizing against drift exist, many require complicated additional hardware or intrusive sample preparations. We introduce a method that requires no additional sample preparation, is simple to implement and simultaneously corrects for x, y and z drift.ResultsWe use bright-field images of the specimen itself to calculate drift in all three dimensions: x, y and z. Bright-field images are acquired on an inexpensive CCD. By correlating each acquired bright-field image with an in-focus and two out-of-focus reference images we determine and actively correct for drift at rates of a few Hertz. This method can maintain stability to within 10 nm for x and y and 20 nm for z over several minutes.ConclusionOur active drift stabilization system is capable of simultaneously compensating x, y and z drift through an image-based correlation method that requires no special sample treatment or extensive microscope modifications. While other techniques may provide better stability, especially for higher frequency drift, our method is easy to implement and widely applicable in terms of both sample type and microscopy technique.


Nature Cell Biology | 2017

Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome

Xiaoyu Shi; Galo Garcia; Julie C. Van De Weghe; Ryan McGorty; Gregory J. Pazour; Dan Doherty; Bo Huang; Jeremy F. Reiter

Ciliopathies, including nephronophthisis (NPHP), Meckel syndrome (MKS) and Joubert syndrome (JBTS), can be caused by mutations affecting components of the transition zone, a domain near the base of the cilium that controls the protein composition of its membrane. We defined the three-dimensional arrangement of key proteins in the transition zone using two-colour stochastic optical reconstruction microscopy (STORM). NPHP and MKS complex components form nested rings comprised of nine-fold doublets. JBTS-associated mutations in RPGRIP1L or TCTN2 displace certain transition-zone proteins. Diverse ciliary proteins accumulate at the transition zone in wild-type cells, suggesting that the transition zone is a waypoint for proteins entering and exiting the cilium. JBTS-associated mutations in RPGRIP1L disrupt SMO accumulation at the transition zone and the ciliary localization of SMO. We propose that the disruption of transition-zone architecture in JBTS leads to a failure of SMO to accumulate at the transition zone and cilium, disrupting developmental signalling in JBTS.


Optics Express | 2013

4Pi fluorescence detection and 3D particle localization with a single objective

Joerg Schnitzbauer; Ryan McGorty; Bo Huang

Coherent detection through two opposing objectives (4Pi configuration) improves the precision of three-dimensional (3D) single-molecule localization substantially along the axial direction, but suffers from instrument complexity and maintenance difficulty. To address these issues, we have realized 4Pi fluorescence detection by sandwiching the sample between the objective and a mirror, and create interference of direct incidence and mirror-reflected signal at the camera with a spatial light modulator. Multifocal imaging using this single-objective mirror interference scheme offers improvement in the axial localization similar to the traditional 4Pi method. We have also devised several PSF engineering schemes to enable 3D localization with a single emitter image, offering better axial precision than normal single-objective localization methods such as astigmatic imaging.


Optics Express | 2016

Light-sheet microscopy with digital Fourier analysis measures transport properties over large field-of-view.

Devynn Wulstein; Kathryn Regan; Rae M. Robertson-Anderson; Ryan McGorty

Using light-sheet microscopy combined with digital Fourier methods we probe the dynamics of colloidal samples and DNA molecules. This combination, referred to as selective-plane illumination differential dynamic microscopy (SPIDDM), has the benefit of optical sectioning to study, with minimal photobleaching, thick samples allowing us to measure the diffusivity of colloidal particles at high volume fractions. Further, SPIDDM exploits the inherent spatially-varying thickness of Gaussian light-sheets. Where the excitation sheet is most focused, we capture high spatial frequency dynamics as the signal-to-background is high. In thicker regions, we capture the slower dynamics as diffusion out of the sheet takes longer.


Developmental Cell | 2015

Specification of Dendritogenesis Site in Drosophila aCC Motoneuron by Membrane Enrichment of Pak1 through Dscam1.

Daichi Kamiyama; Ryan McGorty; Rie Kamiyama; Michael D. Kim; Akira Chiba; Bo Huang

Precise positioning of dendritic branches is a critical step in the establishment of neuronal circuitry. However, there is limited knowledge on how environmental cues translate into dendrite initiation or branching at a specific position. Here, through a combination of mutation, RNAi, and imaging experiments, we found that a Dscam-Dock-Pak1 hierarchical interaction defines the stereotypical dendrite growth site in the Drosophila aCC motoneuron. This interaction localizes the Cdc42 effector Pak1 to the plasma membrane at the dendrite initiation site before the activation of Cdc42. Ectopic expression of membrane-anchored Pak1 overrides this spatial specification of dendritogenesis, confirming its function in guiding Cdc42 signaling. We further discovered that Dscam1 localization in aCC occurs through an inter-neuronal contact that involves Dscam1 in the partner MP1 neuron. These findings elucidate a mechanism by which Dscam1 controls neuronal morphogenesis through spatial regulation of Cdc42 signaling and, subsequently, cytoskeletal remodeling.


Optics Letters | 2017

Point-spread function engineering enhances digital Fourier microscopy

Devynn Wulstein; Ryan McGorty

While numerous optical methods exist to probe the dynamics of biological or complex fluid samples, in recent years digital Fourier microscopy techniques such as differential dynamic microscopy have emerged as ways to efficiently combine elements of imaging and scattering methods. Here, we demonstrate, through experiments and simulations, how point-spread function engineering can be used to extend the reach of differential dynamic microscopy.


bioRxiv | 2018

Bridging the spatiotemporal scales of macromolecular transport in crowded biomimetic systems

Kathryn Regan; Devynn Wulstein; Hannah Rasmussen; Ryan McGorty; Rae M. Robertson-Anderson

Crowding plays a key role in the transport and conformations of biological macromolecules. Gene therapy, viral infection and transfection require DNA to traverse the crowded cytoplasm, including a heterogeneous cytoskeleton of filamentous proteins. Given the complexity of cellular crowding, the dynamics of biological molecules can be highly dependent on the spatiotemporal scale probed. We present a powerful platform that spans molecular and cellular scales by coupling single-molecule conformational tracking (SMCT) and selective-plane illumination differential dynamic microscopy (SPIDDM). We elucidate the transport and conformational properties of large DNA, crowded by custom-designed networks of actin and microtubules, to link single-molecule conformations with ensemble DNA transport and cytoskeleton structure. We show that actin crowding leads to DNA compaction and suppression of fluctuations, combined with anomalous subdiffusion and heterogeneous transport, whereas microtubules have much more subdued impact across all scales. Interestingly, in composite networks of both filaments, microtubules primarily govern single-molecule DNA dynamics whereas actin governs ensemble transport.

Collaboration


Dive into the Ryan McGorty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Xie

University of California

View shared research outputs
Top Co-Authors

Avatar

Harrison Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Doherty

University of Washington Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge