Ryan T. Tucker
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan T. Tucker.
Nanotechnology | 2011
David A. Rider; Ryan T. Tucker; Brian J. Worfolk; Kathleen M. Krause; Abeed Lalany; Michael J. Brett; Jillian M. Buriak; Kenneth D. Harris
Using high surface area nanostructured electrodes in organic photovoltaic (OPV) devices is a route to enhanced power conversion efficiency. In this paper, indium tin oxide (ITO) and hybrid ITO/SiO(2) nanopillars are employed as three-dimensional high surface area transparent electrodes in OPVs. The nanopillar arrays are fabricated via glancing angle deposition (GLAD) and electrochemically modified with nanofibrous PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate)). The structures are found to have increased surface area as characterized by porosimetry. When applied as anodes in polymer/fullerene OPVs (architecture: commercial ITO/GLAD ITO/PEDOT:PSS/P3HT:PCBM/Al, where P3HT is 2,5-diyl-poly(3-hexylthiophene) and PCBM is [6,6]-phenyl-C(61)-butyric acid methyl ester), the air-processed solar cells incorporating high surface area, PEDOT:PSS-modified ITO nanoelectrode arrays operate with improved performance relative to devices processed identically on unstructured, commercial ITO substrates. The resulting power conversion efficiency is 2.2% which is a third greater than for devices prepared on commercial ITO. To further refine the structure, insulating SiO(2) caps are added above the GLAD ITO nanopillars to produce a hybrid ITO/SiO(2) nanoelectrode. OPV devices based on this system show reduced electrical shorting and series resistance, and as a consequence, a further improved power conversion efficiency of 2.5% is recorded.
Journal of the American Chemical Society | 2012
Christophe Renault; Claude P. Andrieux; Ryan T. Tucker; Michael J. Brett; Véronique Balland; Benoît Limoges
Nanoporous films of indium tin oxide (ITO), with thicknesses ranging from 250 nm to 2 μm, were prepared by Glancing Angle Deposition (GLAD) and used as highly sensitive transparent 3D-electrodes for quantitatively interrogating, by time-resolved spectroelectrochemistry, the reactivity of microperoxidase-11 (MP-11) adsorbed within such films. The capacitive current densities of these 3D-electrodes as well as the amount of adsorbed MP-11 were shown to be linearly correlated to the GLAD ITO film thickness, indicating a homogeneous distribution of MP-11 across the film as well as homogeneous film porosity. Under saturating adsorption conditions, MP-11 film concentration as high as 60 mM was reached. This is equivalent to a stack of 110 monolayers of MP-11 per micrometer film thickness. This high MP-11 film loading combined with the excellent ITO film conductivity has allowed the simultaneous characterization of the heterogeneous one-electron transfer dynamics of the MP-11 Fe(III)/Fe(II) redox couple by cyclic voltammetry and cyclic voltabsorptometry, up to a scan rate of few volts per second with a satisfactory single-scan signal-to-noise ratio. The potency of the method to unravel complex redox coupled chemical reactions was also demonstrated with the catalytic reduction of oxygen by MP-11. In the presence of O(2), cross-correlation of electrochemical and spectroscopic data has allowed us to determine the key kinetics and thermodynamics parameters of the redox catalysis that otherwise could not be easily extracted using conventional protein film voltammetry. On the basis of numerical simulations of cyclic voltammograms and voltabsorptograms and within the framework of different plausible catalytic reaction schemes including appropriate approximations, it was shown possible to discriminate between different possible catalytic pathways and to identify the relevant catalytic cycle. In addition, from the best fits of simulations to the experimental voltammograms and voltabsorptograms, the partition coefficient of O(2) for the ITO film as well as the values of two kinetic rate constants could be extracted. It was finally concluded that the catalytic reduction of O(2) by MP-11 adsorbed within nanoporous ITO films occurs via a 2-electron mechanism with the formation of an intermediate Fe(III)-OOH adduct characterized by a decay rate of 11 s(-1). The spectroelectroanalytical strategy presented here opens new opportunities for characterizing complex redox-coupled chemical reactions not only with redox proteins, but also with redox biomimetic systems and catalysts. It might also be of great interest for the development and optimization of new spectroelectrochemical sensors and biosensors, or eventually new photoelectrocatalytic systems or biofuel cells.
ACS Applied Materials & Interfaces | 2010
Sean A. McClure; Brian J. Worfolk; David A. Rider; Ryan T. Tucker; Jordan A. M. Fordyce; M. D. Fleischauer; Ken D. Harris; Michael J. Brett; Jillian M. Buriak
Electrostatic layer-by-layer assembly was the basis for the synthesis of multilayer nanorod/polymer composite films. Cationic and water-soluble CdSe nanorods (NRs) were synthesized and partnered with anionic polymers including poly(sodium 4-styrenesulfonate) (PSS) and two polythiophene-based photoactive polymers, sodium poly[2-(3-thienyl)-ethoxy-4-butylsulfonate (PTEBS) and poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl] (P3KHT). Controlled multilayer growth is shown through UV-vis spectroscopy, cross-sectional SEM and surface analytical techniques including atomic force microscopy. The formation of an intimate nanorod/conducting polymer bulk heterojunction is confirmed through cross-sectional SEM, TEM, and scanning Auger analysis. A series of photovoltaic devices was fabricated on ITO electrodes using CdSe NRs in combination with PTEBS or P3KHT. A thorough device analysis showed that performance was limited by low short circuit current although charge transfer was confirmed in the ELBL nanocomposite thin films.
Langmuir | 2012
Delphine Schaming; Christophe Renault; Ryan T. Tucker; Stéphanie Lau-Truong; J. Aubard; Michael J. Brett; Véronique Balland; Benoît Limoges
3D nanostructured transparent indium tin oxide (ITO) electrodes prepared by glancing angle deposition (GLAD) were used for the spectroelectrochemical characterization of cytochrome c (Cyt c) and neuroglobin (Nb). These small hemoproteins, involved as electron-transfer partners in the prevention of apoptosis, are oppositely charged at physiological pH and can each be adsorbed within the ITO network under different pH conditions. The resulting modified electrodes were investigated by UV-visible absorption spectroscopy coupled with cyclic voltammetry. By using nondenaturating adsorption conditions, we demonstrate that both proteins are capable of direct electron transfer to the conductive ITO surface, sharing apparent standard potentials similar to those reported in solution. Preservation of the 3D protein structure upon adsorption was confirmed by resonance Raman (rR) spectroscopy. Analysis of the derivative cyclic voltabsorptograms (DCVA) monitored either in the Soret or the Q bands at scan rates up to 1 V s(-1) allowed us to investigate direct interfacial electron transfer kinetics. From the DCVA shape and scan rate dependences, we conclude that the interaction of Cyt c with the ITO surface is more specific than Nb, suggesting an oriented adsorption of Cyt c and a random adsorption of Nb on the ITO surface. At the same time, Cyt c appears more sensitive to the experimental adsorption conditions, and complete denaturation of Cyt c may occur as evidenced from cross-correlation of rR spectroscopy and spectroelectrochemistry.
ACS Applied Materials & Interfaces | 2009
David A. Rider; Ken D. Harris; Dong Wang; Jennifer Bruce; M. D. Fleischauer; Ryan T. Tucker; Michael J. Brett; Jillian M. Buriak
The generation and characterization of a robust thienylsilane molecular layer on indium tin oxide substrates was investigated. The molecular layer was found to reduce the oxidation potential required for the electrochemical polymerization of 3,4-ethylenedioxythiophene. The resulting electrochemically prepared poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) (ePEDOT:PSS) films were found to be more uniform in coverage with lower roughness and higher conductivity than analogous films fabricated with bare ITO. A relative improvement in the efficiency of 2,5-diyl-poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) bulk heterojunction solar cells was observed when devices were formed on thienylsilane-modified ITO electrodes, rather than unmodified ITO control electrodes.
ACS Applied Materials & Interfaces | 2013
Enrico Della Gaspera; Ryan T. Tucker; Kurt Star; Esther H. Lan; Yongho Sungtaek Ju; Bruce Dunn
We have devised a moderate temperature hot-pressing route for preparing metal-matrix composites which possess tunable thermal expansion coefficients in combination with high electrical and thermal conductivities. The composites are based on incorporating ZrW2O8, a material with a negative coefficient of thermal expansion (CTE), within a continuous copper matrix. The ZrW2O8 enables us to tune the CTE in a predictable manner, while the copper phase is responsible for the electrical and thermal conductivity properties. An important consideration in the processing of these materials is to avoid the decomposition of the ZrW2O8 phase. This is accomplished by using relatively mild hot-pressing conditions of 500 °C for 1 h at 40 MPa. To ensure that these conditions enable sintering of the copper, we developed a synthesis route for the preparation of Cu nanoparticles (NPs) based on the reduction of a common copper salt in aqueous solution in the presence of a size control agent. Upon hot pressing these nanoparticles at 500 °C, we are able to achieve 92-93% of the theoretical density of copper. The resulting materials exhibit a CTE which can be tuned between the value of pure copper (16.5 ppm/°C) and less than 1 ppm/°C. Thus, by adjusting the relative amount of the two components, the properties of the composite can be designed so that a material with high electrical conductivity and a CTE that matches the relatively low CTE values of semiconductor or thermoelectric materials can be achieved. This unique combination of electrical and thermal properties enables these Cu-based metal-matrix composites to be used as electrical contacts to a variety of semiconductor and thermoelectric devices which offer stable operation under thermal cycling conditions.
Nanotechnology | 2014
Joshua M. LaForge; Tyler L. Cocker; Allan L. Beaudry; K Cui; Ryan T. Tucker; Michael T. Taschuk; Frank A. Hegmann; Michael J. Brett
Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s(-1), achieving a maximum of ~ 10 (Ω cm)(-1). Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ~ 3000 (Ω cm)(-1), comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.
Nano Letters | 2014
Allan L. Beaudry; Joshua M. LaForge; Ryan T. Tucker; Jason B. Sorge; Nicholas L. Adamski; Peng Li; Michael T. Taschuk; Michael J. Brett
Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.
Applied Physics Letters | 2012
Ryan T. Tucker; Allan L. Beaudry; Joshua M. LaForge; Michael T. Taschuk; Michael J. Brett
Combining vapour-liquid-solid growth with glancing angle deposition (VLS-GLAD) facilitates fabrication of branched nanowires not possible with either technique alone. Indium tin oxide (ITO) nanostructures grown by VLS-GLAD produce extremely porous nanotree structures, where periodic branch diameter oscillations are sometimes observed. We explain this rippled branch growth with a simple model linking the physics governing branch growth to the process variables controlled in VLS-GLAD. The model is verified by inducing specific, aperiodic ripples onto growing ITO branches through macroscopic vapour flux control and manipulation of local shadowing.
Journal of Vacuum Science and Technology | 2013
Abeed Lalany; Ryan T. Tucker; Michael T. Taschuk; M. D. Fleischauer; Michael J. Brett
Achieving the full potential of nanopillar electrode based devices, such as next-generation solar cells, catalyst supports, and sensors, requires axial resistivity measurements to optimize electronic performance. Here, the authors demonstrate a technique for direct measurement of the ensemble electrical properties of nanopillar thin films along the structures longitudinal axis. A cross-bridge Kelvin resistor architecture is adapted to accommodate an indium tin oxide (ITO) nanopillar thin film fabricated by glancing angle deposition (GLAD). As-deposited GLAD ITO nanopillars were found to have a measured resistivity of (1.1 ± 0.3) × 10−2 Ω cm using our technique. Planar ITO films deposited at near normal incidence were found to have a resistivity of (4.5 ± 0.5) × 10−3 Ω cm, determined by the standard four-point-probe technique. These measurements demonstrate the viability of this modified technique for nanopillar characterization, and identify experimental limitations related to device size and edge defects.