Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Hatori is active.

Publication


Featured researches published by Ryo Hatori.


Science | 2011

Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis.

Kiichiro Taniguchi; Reo Maeda; Tadashi Ando; Takashi Okumura; Naotaka Nakazawa; Ryo Hatori; Mitsutoshi Nakamura; Shunya Hozumi; Hiroo Fujiwara; Kenji Matsuno

Left-right asymmetry in cell shape is converted to a directional twist of the gut epithelial tube. Some organs in animals display left-right (LR) asymmetry. To better understand LR asymmetric morphogenesis in Drosophila, we studied LR directional rotation of the hindgut epithelial tube. Hindgut epithelial cells adopt a LR asymmetric (chiral) cell shape within their plane, and we refer to this cell behavior as planar cell-shape chirality (PCC). Drosophila E-cadherin (DE-Cad) is distributed to cell boundaries with LR asymmetry, which is responsible for the PCC formation. Myosin ID switches the LR polarity found in PCC and in DE-Cad distribution, which coincides with the direction of rotation. An in silico simulation showed that PCC is sufficient to induce the directional rotation of this tissue. Thus, the intrinsic chirality of epithelial cells in vivo is an underlying mechanism for LR asymmetric tissue morphogenesis.


Mechanisms of Development | 2014

Left-right asymmetry is formed in individual cells by intrinsic cell chirality.

Ryo Hatori; Tadashi Ando; Takeshi Sasamura; Naotaka Nakazawa; Mitsutoshi Nakamura; Kiichiro Taniguchi; Shunya Hozumi; Junichi Kikuta; Masaru Ishii; Kenji Matsuno

Many animals show left-right (LR) asymmetric morphology. The mechanisms of LR asymmetric development are evolutionarily divergent, and they remain elusive in invertebrates. Various organs in Drosophila melanogaster show stereotypic LR asymmetry, including the embryonic gut. The Drosophila embryonic hindgut twists 90° left-handedly, thereby generating directional LR asymmetry. We recently revealed that the hindgut epithelial cell is chiral in shape and other properties; this is termed planar cell chirality (PCC). We previously showed by computer modeling that PCC is sufficient to induce the hindgut rotation. In addition, both the PCC and the direction of hindgut twisting are reversed in Myosin31DF (Myo31DF) mutants. Myo31DF encodes Drosophila MyosinID, an actin-based motor protein, whose molecular functions in LR asymmetric development are largely unknown. Here, to understand how PCC directs the asymmetric cell-shape, we analyzed PCC in genetic mosaics composed of cells homozygous for mutant Myo31DF, some of which also overexpressed wild-type Myo31DF. Wild-type cell-shape chirality only formed in the Myo31DF-overexpressing cells, suggesting that cell-shape chirality was established in each cell and reflects intrinsic PCC. A computer model recapitulating the development of this genetic mosaic suggested that mechanical interactions between cells are required for the cell-shape behavior seen in vivo. Our mosaic analysis also suggested that during hindgut rotation in vivo, wild-type Myo31DF suppresses the elongation of cell boundaries, supporting the idea that cell-shape chirality is an intrinsic property determined in each cell. However, the amount and distribution of F-actin and Myosin II, which are known to help generate the contraction force on cell boundaries, did not show differences between Myo31DF mutant cells and wild-type cells, suggesting that the static amount and distribution of these proteins are not involved in the suppression of cell-boundary elongation. Taken together, our results suggest that cell-shape chirality is intrinsically formed in each cell, and that mechanical force from intercellular interactions contributes to its formation and/or maintenance.


Development | 2017

Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc

Weitao Chen; Hai Huang; Ryo Hatori; Thomas B. Kornberg

Morphogen concentration gradients that extend across developmental fields form by dispersion from source cells. In the Drosophila wing disc, Hedgehog (Hh) produced by posterior compartment cells distributes in a concentration gradient to adjacent cells of the anterior compartment. We monitored Hh:GFP after pulsed expression, and analyzed the movement and colocalization of Hh, Patched (Ptc) and Smoothened (Smo) proteins tagged with GFP or mCherry and expressed at physiological levels from bacterial artificial chromosome transgenes. Hh:GFP moved to basal subcellular locations prior to release from posterior compartment cells that express it, and was taken up by basal cytonemes that extend to the source cells. Hh and Ptc were present in puncta that moved along the basal cytonemes and formed characteristic apical-basal distributions in the anterior compartment cells. The basal cytonemes required diaphanous, SCAR, Neuroglian and Synaptobrevin, and both the Hh gradient and Hh signaling declined under conditions in which the cytonemes were compromised. These findings show that in the wing disc, Hh distributions and signaling are dependent upon basal release and uptake, and on cytoneme-mediated movement. No evidence for apical dispersion was obtained. Summary: Distributions of Hh:GFP expressed during a timed pulse, and of Hh:GFP, Ptc:mCherry and Smo:GFP expressed by BAC transgenes, reveal a basal route of Hh dispersion and Hh intracellular choreography in the Drosophila wing disc.


Mechanisms of Development | 2012

Canonical Wnt signaling in the visceral muscle is required for left-right asymmetric development of the Drosophila midgut.

Junpei Kuroda; Mitsutoshi Nakamura; Masashi Yoshida; Haruka Yamamoto; Takaaki Maeda; Kiichiro Taniguchi; Naotaka Nakazawa; Ryo Hatori; Akira Ishio; Ayumi Ozaki; Shunsuke Shimaoka; Tamiko Ito; Hironao Iida; Takashi Okumura; Reo Maeda; Kenji Matsuno

Many animals develop left-right (LR) asymmetry in their internal organs. The mechanisms of LR asymmetric development are evolutionarily divergent, and are poorly understood in invertebrates. Therefore, we studied the genetic pathway of LR asymmetric development in Drosophila. Drosophila has several organs that show directional and stereotypic LR asymmetry, including the embryonic gut, which is the first organ to develop LR asymmetry during Drosophila development. In this study, we found that genes encoding components of the Wnt-signaling pathway are required for LR asymmetric development of the anterior part of the embryonic midgut (AMG). frizzled 2 (fz2) and Wnt4, which encode a receptor and ligand of Wnt signaling, respectively, were required for the LR asymmetric development of the AMG. arrow (arr), an ortholog of the mammalian gene encoding low-density lipoprotein receptor-related protein 5/6, which is a co-receptor of the Wnt-signaling pathway, was also essential for LR asymmetric development of the AMG. These results are the first demonstration that Wnt signaling contributes to LR asymmetric development in invertebrates, as it does in vertebrates. The AMG consists of visceral muscle and an epithelial tube. Our genetic analyses revealed that Wnt signaling in the visceral muscle but not the epithelium of the midgut is required for the AMG to develop its normal laterality. Furthermore, fz2 and Wnt4 were expressed in the visceral muscles of the midgut. Consistent with these results, we observed that the LR asymmetric rearrangement of the visceral muscle cells, the first visible asymmetry of the developing AMG, did not occur in embryos lacking Wnt4 expression. Our results also suggest that canonical Wnt/β-catenin signaling, but not non-canonical Wnt signaling, is responsible for the LR asymmetric development of the AMG. Canonical Wnt/β-catenin signaling is reported to have important roles in LR asymmetric development in zebrafish. Thus, the contribution of canonical Wnt/β-catenin signaling to LR asymmetric development may be an evolutionarily conserved feature between vertebrates and invertebrates.


Developmental Biology | 2010

Left–right asymmetric morphogenesis of the anterior midgut depends on the activation of a non-muscle myosin II in Drosophila

Takashi Okumura; Hiroo Fujiwara; Kiichiro Taniguchi; Junpei Kuroda; Naotaka Nakazawa; Mitsutoshi Nakamura; Ryo Hatori; Akira Ishio; Reo Maeda; Kenji Matsuno

Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.


Genetics | 2015

Class I Myosins Have Overlapping and Specialized Functions in Left-Right Asymmetric Development in Drosophila

Takashi Okumura; Takeshi Sasamura; Momoko Inatomi; Shunya Hozumi; Mitsutoshi Nakamura; Ryo Hatori; Kiichiro Taniguchi; Naotaka Nakazawa; Emiko Suzuki; Reo Maeda; Tomoko Yamakawa; Kenji Matsuno

The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.


Zoological Science | 2013

An In-silico Genomic Survey to Annotate Genes Coding for Early Development-relevant Signaling Molecules in the Pearl Oyster, Pinctada fucata

Davin H. E. Setiamarga; Keisuke Shimizu; Junpei Kuroda; Kengo Inamura; Kei Sato; Yukinobu Isowa; Makiko Ishikawa; Reo Maeda; Tomoyuki Nakano; Tomoko Yamakawa; Ryo Hatori; Akira Ishio; Kayo Kaneko; Kenjiroo Matsumoto; Isao Sarashina; Shinnosuke Teruya; Ran Zhao; Nori Satoh; Takenori Sasaki; Kenji Matsuno; Kazuyoshi Endo

The pearl oyster Pinctada fucata has great potential as a model system for lophotrochozoan developmental biology research. Pinctada fucata is an important commercial resource, and a significant body of primary research on this species has emphasized its basic aquaculture biology such as larval biology and growth, aquaculture, pearl formation and quality improvement, shell formation, and biomineralization. Recently, a draft genome sequence of this species was published, and many experimental resources are currently being developed, such as bioinformatics tools, embryo and larva manipulation methods, gene knockdown technique, etc. In this paper, we report the results from our genomic survey pertaining to gene families that encode developmental signaling ligands (Fgf, Hedgehog, PDGF/VEGF, TGFβ, and Wnt families). We found most of the representative genes of major signaling pathways involved in axial patterning, as well as copies of the signaling molecule paralogs. Phylogenetic character mapping was used to infer a possible evolutionary scenario of the signaling molecules in the protostomes, and to reconstruct possible copy numbers of signaling molecule-coding genes for the ancestral protostome. Our reconstruction suggests that P. fucata retains the ancestral protostome gene complement, providing further justifications for the use of this taxon as a model organism for developmental genomics research.


Mechanisms of Development | 2013

Reduced cell number in the hindgut epithelium disrupts hindgut left-right asymmetry in a mutant of pebble, encoding a RhoGEF, in Drosophila embryos.

Mitsutoshi Nakamura; Kenjiroo Matsumoto; Yuta Iwamoto; Takeshi Muguruma; Naotaka Nakazawa; Ryo Hatori; Kiichiro Taniguchi; Reo Maeda; Kenji Matsuno

Animals often show left-right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbls role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity.


eLife | 2018

Chiral cell sliding drives left-right asymmetric organ twisting

Mikiko Inaki; Ryo Hatori; Naotaka Nakazawa; Takashi Okumura; Tomoki Ishibashi; Junichi Kikuta; Masaru Ishii; Kenji Matsuno; Hisao Honda

Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis.


bioRxiv | 2018

Cytoneme-mediated signaling essential for tumorigenesis

Thomas B. Kornberg; Sol Fereres; Ryo Hatori; Makiko Hatori

Communication between neoplastic cells and cells of their microenvironment is critical to cancer progression. To investigate the role of cytoneme-mediated signaling as a mechanism for distributing growth factor signaling proteins between tumor and tumor-associated cells, we analyzed EGFR and RET Drosophila tumor models. We tested several genetic loss-of-function conditions that impair cytoneme-mediated signaling. diaphanous, Neuroglian, SCAR, capricious are genes that cytonemes require during normal development. Genetic inhibition of cytonemes restored apical basal polarity to tumor cells, reduced tumor growth, and increased organism survival. These findings suggest that cytonemes traffic the signaling proteins that move between tumor and stromal cells, and that cytoneme-mediated signaling is required for tumor growth and malignancy. Summary Essential cytonemes for paracrine signaling in Drosophila tumors

Collaboration


Dive into the Ryo Hatori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naotaka Nakazawa

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Kiichiro Taniguchi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Reo Maeda

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Takashi Okumura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shunya Hozumi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Akira Ishio

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Junpei Kuroda

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge