Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiichiro Taniguchi is active.

Publication


Featured researches published by Kiichiro Taniguchi.


Nature | 2006

An unconventional myosin in Drosophila reverses the default handedness in visceral organs

Shunya Hozumi; Reo Maeda; Kiichiro Taniguchi; Maiko Kanai; Syuichi Shirakabe; Takeshi Sasamura; Pauline Spéder; Stéphane Noselli; Toshiro Aigaki; Ryutaro Murakami; Kenji Matsuno

The internal organs of animals often have left–right asymmetry. Although the formation of the anterior–posterior and dorsal–ventral axes in Drosophila is well understood, left–right asymmetry has not been extensively studied. Here we find that the handedness of the embryonic gut and the adult gut and testes is reversed (not randomized) in viable and fertile homozygous Myo31DF mutants. Myo31DF encodes an unconventional myosin, Drosophila MyoIA (also referred to as MyoID in mammals; refs 3, 4), and is the first actin-based motor protein to be implicated in left–right patterning. We find that Myo31DF is required in the hindgut epithelium for normal embryonic handedness. Disruption of actin filaments in the hindgut epithelium randomizes the handedness of the embryonic gut, suggesting that Myo31DF function requires the actin cytoskeleton. Consistent with this, we find that Myo31DF colocalizes with the cytoskeleton. Overexpression of Myo61F, another myosin I (ref. 4), reverses the handedness of the embryonic gut, and its knockdown also causes a left–right patterning defect. These two unconventional myosin I proteins may have antagonistic functions in left–right patterning. We suggest that the actin cytoskeleton and myosin I proteins may be crucial for generating left–right asymmetry in invertebrates.


Science | 2011

Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis.

Kiichiro Taniguchi; Reo Maeda; Tadashi Ando; Takashi Okumura; Naotaka Nakazawa; Ryo Hatori; Mitsutoshi Nakamura; Shunya Hozumi; Hiroo Fujiwara; Kenji Matsuno

Left-right asymmetry in cell shape is converted to a directional twist of the gut epithelial tube. Some organs in animals display left-right (LR) asymmetry. To better understand LR asymmetric morphogenesis in Drosophila, we studied LR directional rotation of the hindgut epithelial tube. Hindgut epithelial cells adopt a LR asymmetric (chiral) cell shape within their plane, and we refer to this cell behavior as planar cell-shape chirality (PCC). Drosophila E-cadherin (DE-Cad) is distributed to cell boundaries with LR asymmetry, which is responsible for the PCC formation. Myosin ID switches the LR polarity found in PCC and in DE-Cad distribution, which coincides with the direction of rotation. An in silico simulation showed that PCC is sufficient to induce the directional rotation of this tissue. Thus, the intrinsic chirality of epithelial cells in vivo is an underlying mechanism for LR asymmetric tissue morphogenesis.


PLOS ONE | 2012

The Homeodomain Protein Defective Proventriculus Is Essential for Male Accessory Gland Development to Enhance Fecundity in Drosophila

Ryunosuke Minami; Miyuki Wakabayashi; Seiko Sugimori; Kiichiro Taniguchi; Akihiko Kokuryo; Takao Imano; Takashi Adachi-Yamada; Naoko Watanabe; Hideki Nakagoshi

The Drosophila male accessory gland has functions similar to those of the mammalian prostate gland and the seminal vesicle, and secretes accessory gland proteins into the seminal fluid. Each of the two lobes of the accessory gland is composed of two types of binucleate cell: about 1,000 main cells and 40 secondary cells. A well-known accessory gland protein, sex peptide, is secreted from the main cells and induces female postmating response to increase progeny production, whereas little is known about physiological significance of the secondary cells. The homeodomain transcriptional repressor Defective proventriculus (Dve) is strongly expressed in adult secondary cells, and its mutation resulted in loss of secondary cells, mononucleation of main cells, and reduced size of the accessory gland. dve mutant males had low fecundity despite the presence of sex peptide, and failed to induce the female postmating responses of increased egg laying and reduced sexual receptivity. RNAi-mediated dve knockdown males also had low fecundity with normally binucleate main cells. We provide the first evidence that secondary cells are crucial for male fecundity, and also that Dve activity is required for survival of the secondary cells. These findings provide new insights into a mechanism of fertility/fecundity.


Mechanisms of Development | 2007

Roles of single-minded in the left-right asymmetric development of the Drosophila embryonic gut

Reo Maeda; Shunya Hozumi; Kiichiro Taniguchi; Takeshi Sasamura; Ryutaro Murakami; Kenji Matsuno

Many animals have genetically determined left-right (LR) asymmetry of their internal organs. The midline structure of vertebrate embryos has important roles in LR asymmetric development both as the signaling center for LR asymmetry and as a barrier to inappropriate LR signaling across the midline. However, in invertebrates, the functions of the midline in LR asymmetric development are unknown. To elucidate these roles, we studied the involvement of single-minded (sim) in the LR asymmetry of the Drosophila embryonic gut, which develops in a stereotypic, asymmetric manner. sim encodes a bHLH/PAS transcription factor that is required for the development of the ventral midline structure. Here we report that sim was expressed in the midline of the foregut and hindgut primordia. The handedness of the embryonic gut was affected in sim mutant embryos and in embryos overexpressing sim. However, midline-derived events, which involve Slit/Robo and EGFr signaling and direct the development of the tissues adjacent to the midline, did not affect the laterality of this organ, suggesting a crucial role for the midline itself in LR asymmetry. In the sim mutants, the midline structures of the embryonic anal pad were deformed. The mis-expression of sim in the anal-pad primordium induced LR defects. We also found that different portions of the embryonic gut require sim functions at different times for normal LR asymmetry. Our results suggest that the midline structures are involved in the LR asymmetric development of the Drosophila embryonic gut.


Mechanisms of Development | 2014

Left-right asymmetry is formed in individual cells by intrinsic cell chirality.

Ryo Hatori; Tadashi Ando; Takeshi Sasamura; Naotaka Nakazawa; Mitsutoshi Nakamura; Kiichiro Taniguchi; Shunya Hozumi; Junichi Kikuta; Masaru Ishii; Kenji Matsuno

Many animals show left-right (LR) asymmetric morphology. The mechanisms of LR asymmetric development are evolutionarily divergent, and they remain elusive in invertebrates. Various organs in Drosophila melanogaster show stereotypic LR asymmetry, including the embryonic gut. The Drosophila embryonic hindgut twists 90° left-handedly, thereby generating directional LR asymmetry. We recently revealed that the hindgut epithelial cell is chiral in shape and other properties; this is termed planar cell chirality (PCC). We previously showed by computer modeling that PCC is sufficient to induce the hindgut rotation. In addition, both the PCC and the direction of hindgut twisting are reversed in Myosin31DF (Myo31DF) mutants. Myo31DF encodes Drosophila MyosinID, an actin-based motor protein, whose molecular functions in LR asymmetric development are largely unknown. Here, to understand how PCC directs the asymmetric cell-shape, we analyzed PCC in genetic mosaics composed of cells homozygous for mutant Myo31DF, some of which also overexpressed wild-type Myo31DF. Wild-type cell-shape chirality only formed in the Myo31DF-overexpressing cells, suggesting that cell-shape chirality was established in each cell and reflects intrinsic PCC. A computer model recapitulating the development of this genetic mosaic suggested that mechanical interactions between cells are required for the cell-shape behavior seen in vivo. Our mosaic analysis also suggested that during hindgut rotation in vivo, wild-type Myo31DF suppresses the elongation of cell boundaries, supporting the idea that cell-shape chirality is an intrinsic property determined in each cell. However, the amount and distribution of F-actin and Myosin II, which are known to help generate the contraction force on cell boundaries, did not show differences between Myo31DF mutant cells and wild-type cells, suggesting that the static amount and distribution of these proteins are not involved in the suppression of cell-boundary elongation. Taken together, our results suggest that cell-shape chirality is intrinsically formed in each cell, and that mechanical force from intercellular interactions contributes to its formation and/or maintenance.


Developmental Biology | 2016

GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut

Takashi Okumura; Koji Takeda; Megumi Kuchiki; Marie Akaishi; Kiichiro Taniguchi; Takashi Adachi-Yamada

Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation.


Mechanisms of Development | 2012

Canonical Wnt signaling in the visceral muscle is required for left-right asymmetric development of the Drosophila midgut.

Junpei Kuroda; Mitsutoshi Nakamura; Masashi Yoshida; Haruka Yamamoto; Takaaki Maeda; Kiichiro Taniguchi; Naotaka Nakazawa; Ryo Hatori; Akira Ishio; Ayumi Ozaki; Shunsuke Shimaoka; Tamiko Ito; Hironao Iida; Takashi Okumura; Reo Maeda; Kenji Matsuno

Many animals develop left-right (LR) asymmetry in their internal organs. The mechanisms of LR asymmetric development are evolutionarily divergent, and are poorly understood in invertebrates. Therefore, we studied the genetic pathway of LR asymmetric development in Drosophila. Drosophila has several organs that show directional and stereotypic LR asymmetry, including the embryonic gut, which is the first organ to develop LR asymmetry during Drosophila development. In this study, we found that genes encoding components of the Wnt-signaling pathway are required for LR asymmetric development of the anterior part of the embryonic midgut (AMG). frizzled 2 (fz2) and Wnt4, which encode a receptor and ligand of Wnt signaling, respectively, were required for the LR asymmetric development of the AMG. arrow (arr), an ortholog of the mammalian gene encoding low-density lipoprotein receptor-related protein 5/6, which is a co-receptor of the Wnt-signaling pathway, was also essential for LR asymmetric development of the AMG. These results are the first demonstration that Wnt signaling contributes to LR asymmetric development in invertebrates, as it does in vertebrates. The AMG consists of visceral muscle and an epithelial tube. Our genetic analyses revealed that Wnt signaling in the visceral muscle but not the epithelium of the midgut is required for the AMG to develop its normal laterality. Furthermore, fz2 and Wnt4 were expressed in the visceral muscles of the midgut. Consistent with these results, we observed that the LR asymmetric rearrangement of the visceral muscle cells, the first visible asymmetry of the developing AMG, did not occur in embryos lacking Wnt4 expression. Our results also suggest that canonical Wnt/β-catenin signaling, but not non-canonical Wnt signaling, is responsible for the LR asymmetric development of the AMG. Canonical Wnt/β-catenin signaling is reported to have important roles in LR asymmetric development in zebrafish. Thus, the contribution of canonical Wnt/β-catenin signaling to LR asymmetric development may be an evolutionarily conserved feature between vertebrates and invertebrates.


Developmental Biology | 2010

Left–right asymmetric morphogenesis of the anterior midgut depends on the activation of a non-muscle myosin II in Drosophila

Takashi Okumura; Hiroo Fujiwara; Kiichiro Taniguchi; Junpei Kuroda; Naotaka Nakazawa; Mitsutoshi Nakamura; Ryo Hatori; Akira Ishio; Reo Maeda; Kenji Matsuno

Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.


Genetics | 2015

Class I Myosins Have Overlapping and Specialized Functions in Left-Right Asymmetric Development in Drosophila

Takashi Okumura; Takeshi Sasamura; Momoko Inatomi; Shunya Hozumi; Mitsutoshi Nakamura; Ryo Hatori; Kiichiro Taniguchi; Naotaka Nakazawa; Emiko Suzuki; Reo Maeda; Tomoko Yamakawa; Kenji Matsuno

The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.


PLOS ONE | 2014

βν integrin inhibits chronic and high level activation of JNK to repress senescence phenotypes in Drosophila adult midgut

Takashi Okumura; Koji Takeda; Kiichiro Taniguchi; Takashi Adachi-Yamada

Proper control of adult stem cells including their proliferation and differentiation is crucial in maintaining homeostasis of well-organized tissues/organs throughout an organisms life. The Drosophila adult midgut has intestinal stem cells (ISCs), which have been exploited as a simple model system to investigate mechanisms controlling adult tissue homeostasis. Here, we found that a viable mutant of βν integrin (βint-ν), encoding one of two Drosophila integrin β subunits, showed a short midgut and abnormal multilayered epithelia accompanied by an increase in ISC proliferation and misdifferentiation defects. The increase in ISC proliferation and misdifferentiation was due to frequent ISC duplication expanding a pool of ISCs, which was caused by depression of the Notch signalling, and up-regulation of unpaired (upd), a gene encoding an extracellular ligand in the JAK/STAT signalling pathway. In addition, we observed that abnormally high accumulation of filamentous actin (F-actin) was caused in the βint-ν mutant enterocytes. Furthermore, the defects were rescued by suppressing c-Jun N-terminal kinase (JNK) signalling, which was up-regulated in a manner correlated with the defect levels in the above-mentioned βint-ν mutant phenotype. These symptoms observed in young βint-ν mutant midgut were very similar to those in the aged midgut in wild type. Our results suggested that βint-ν has a novel function for the Drosophila adult midgut homeostasis under normal conditions and provided a new insight into possible age-related diseases caused by latent abnormality of an integrin function.

Collaboration


Dive into the Kiichiro Taniguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reo Maeda

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Okumura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Naotaka Nakazawa

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Shunya Hozumi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryo Hatori

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge