Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Mizuta is active.

Publication


Featured researches published by Ryo Mizuta.


Journal of Climate | 2012

Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM*

Hiroyuki Murakami; Yuqing Wang; Hiromasa Yoshimura; Ryo Mizuta; Masato Sugi; Eiki Shindo; Yukimasa Adachi; Seiji Yukimoto; Masahiro Hosaka; Shoji Kusunoki; Tomoaki Ose; Akio Kitoh

AbstractNew versions of the high-resolution 20- and 60-km-mesh Meteorological Research Institute (MRI) atmospheric general circulation models (MRI-AGCM version 3.2) have been developed and used to investigate potential future changes in tropical cyclone (TC) activity. Compared with the previous version (version 3.1), version 3.2 yields a more realistic simulation of the present-day (1979–2003) global distribution of TCs. Moreover, the 20-km-mesh model version 3.2 is able to simulate extremely intense TCs (categories 4 and 5), which is the first time a global climate model has been able to simulate such extremely intense TCs through a multidecadal simulation. Future (2075–99) projections under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario are conducted using versions 3.1 and 3.2, showing consistent decreases in the number of TCs globally and in both hemispheres as climate warms. Although projected future changes in basin-scale TC numbers show some differences between the two versions, t...


Climate Dynamics | 2012

Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM

Hiroyuki Murakami; Ryo Mizuta; Eiki Shindo

Uncertainties in projected future changes in tropical cyclone (TC) activity are investigated using future (2075–2099) ensemble projections of global warming under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Twelve ensemble experiments are performed using three different cumulus convection schemes and four different assumptions for prescribed future sea surface temperatures (SSTs). All ensemble experiments consistently project significant reductions in global and hemispheric TC genesis numbers as well as reductions in TC frequency of occurrence (TCF) and TC genesis frequency (TGF) in the western North Pacific, South Indian Ocean, and South Pacific Ocean. TCF and TGF are projected to increase over the central Pacific which is consistent with the findings of Li et al. (2010). Inter-experimental variations of projected future changes in TGF and TC genesis number are caused mainly by differences in large-scale dynamical parameters and SST anomalies. Thermodynamic parameters are of secondary importance for variations in TGF and TC genesis number. These results imply that differences in SST spatial patterns can cause substantial variations and uncertainties in projected future changes of TGF and TC numbers at ocean-basin scales.


Journal of Geophysical Research | 2009

Future change in wintertime atmospheric blocking simulated using a 20‐km‐mesh atmospheric global circulation model

Mio Matsueda; Ryo Mizuta; Shoji Kusunoki

[1] Future change in the frequency of atmospheric blocking is investigated through present-day (1979-2003) and future (2075-2099) simulations using 20-, 60-, 120-, and 180-km-mesh atmospheric general circulation models (AGCMs) under the Intergovernmental Panel on Climate Change Special Reports on Emission Scenarios A1B emission scenario, focusing on the Northern Hemisphere winter (December-February). The results of present-day climate simulations reveal that the AGCM with the highest horizontal resolution is required to accurately simulate Euro-Atlantic blocking, whereas the AGCM with the lowest horizontal resolution is in good agreement with reanalysis data regarding the frequency of Pacific blocking. While the lower-resolution models accurately reproduce long-lived Pacific blocking, they are unable to accurately simulate long-lived Euro-Atlantic blocking. This result suggests that the maintenance mechanism of Euro-Atlantic blocking is different from that of Pacific blocking. In the future climate simulations, both frequencies of Euro-Atlantic and Pacific blockings are predicted to show a significant decrease, mainly in the western part of each peak in present-day blocking frequency, where the westerly jet is predicted to increase in strength; no significant change is predicted in the eastern part of each peak. The number of Euro-Atlantic blocking events is predicted to decrease for almost all blocking durations, whereas the decrease in the number of Pacific blockings is remarkable for long-duration events. It is possible that long-lived (>25 days) Euro-Atlantic and Pacific blockings will disappear altogether in the future.


Monthly Weather Review | 2015

A Spectral Cumulus Parameterization Scheme Interpolating between Two Convective Updrafts with Semi-Lagrangian Calculation of Transport by Compensatory Subsidence

Hiromasa Yoshimura; Ryo Mizuta; Hiroyuki Murakami

AbstractThe authors have developed a new spectral cumulus parameterization scheme that explicitly considers an ensemble of multiple convective updrafts by interpolating in-cloud variables between two convective updrafts with large and small entrainment rates. This cumulus scheme has the advantages that the variables in entraining and detraining convective updrafts are calculated in detail layer by layer as in the Tiedtke scheme, and that a spectrum of convective updrafts with different heights due to the difference in entrainment rates is explicitly represented, as in the Arakawa–Schubert scheme. A conservative and monotonic semi-Lagrangian scheme is used for calculation of transport by convection-induced compensatory subsidence. Use of the semi-Lagrangian scheme relaxes the mass-flux limit due to the Courant–Friedrichs–Lewy (CFL) condition, and moreover ensures nonnegative natural material transport. A global atmospheric model using this cumulus scheme gives an atmospheric simulation that agrees well wit...


Journal of Climate | 2011

Future Change in Extratropical Cyclones Associated with Change in the Upper Troposphere

Ryo Mizuta; Mio Matsueda; Hirokazu Endo; Seiji Yukimoto

AbstractFuture changes in Northern Hemisphere wintertime storm activity as a consequence of global warming are investigated using the AGCM of Meteorological Research Institute (MRI-AGCM) with horizontal grid sizes of 60 and 20 km. A future (2075–99) climate experiment, in which the change in sea surface temperature (SST) derived from the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble mean is added to observed SST, is compared with a present-day (1979–2003) climate experiment. Results of three-member simulations using the 60-km model are presented. A single simulation using the 20-km model is also presented, showing that similar results are obtained.In the future climate experiment, the number of intense cyclones (sea level pressure below 980 hPa) shows a significant increase whereas the number of total cyclones shows a significant decrease, similar to the results obtained from the CMIP3 models themselves. The increase in intense cyclones is seen on the polar side and downstream ...


Journal of Climate | 2007

High-Resolution Simulation of Mean Convection and Its Intraseasonal Variability over the Tropics in the MRI/JMA 20-km Mesh AGCM

Kavirajan Rajendran; Akio Kitoh; Ryo Mizuta; S. Sajani; T. Nakazawa

Abstract Tropical mean convection and its organization on different spatiotemporal scales in a simulation using the Meteorological Research Institute/Japan Meteorological Agency (MRI/JMA) global atmospheric general circulation model (AGCM) at 20-km resolution (TL959L60) has been investigated. Comparison with two lower resolution simulations of 120 km (TL159L40) and 180 km (TL95L40) shows that convection, climatological fields, and moist stability over the Indian Ocean and South Pacific convergence zone are better represented in TL959L60 than in lower resolution simulations. However, the simulated three-dimensional structure of the Walker and Hadley cells, and the vertical structure of convective heating, do not show marked improvement relative to lower resolution simulations. The amplitude and phase speed of convectively coupled equatorial waves show that, although the Kelvin waves, the observed hierarchical structure of cloud clusters associated with the Madden–Julian oscillation (MJO) convection, and th...


Bulletin of the American Meteorological Society | 2017

Over 5,000 Years of Ensemble Future Climate Simulations by 60-km Global and 20-km Regional Atmospheric Models

Ryo Mizuta; Akihiko Murata; Masayoshi Ishii; Hideo Shiogama; Kenshi Hibino; Nobuhito Mori; Osamu Arakawa; Yukiko Imada; Kohei Yoshida; Toshinori Aoyagi; Hiroaki Kawase; Masato Mori; Yasuko Okada; Tomoya Shimura; Toshiharu Nagatomo; Mikiko Ikeda; Hirokazu Endo; Masaya Nosaka; Miki Arai; Chiharu Takahashi; Kenji Tanaka; Tetsuya Takemi; Yasuto Tachikawa; Khujanazarov Temur; Youichi Kamae; Masahiro Watanabe; Hidetaka Sasaki; Akio Kitoh; Izuru Takayabu; Eiichi Nakakita

AbstractAn unprecedentedly large ensemble of climate simulations with a 60-km atmospheric general circulation model and dynamical downscaling with a 20-km regional climate model has been performed to obtain probabilistic future projections of low-frequency local-scale events. The climate of the latter half of the twentieth century, the climate 4 K warmer than the preindustrial climate, and the climate of the latter half of the twentieth century without historical trends associated with the anthropogenic effect are each simulated for more than 5,000 years. From large ensemble simulations, probabilistic future changes in extreme events are available directly without using any statistical models. The atmospheric models are highly skillful in representing localized extreme events, such as heavy precipitation and tropical cyclones. Moreover, mean climate changes in the models are consistent with those in phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensembles. Therefore, the results enable the a...


Journal of Climate | 2009

Tropical Intraseasonal Variability in the MRI-20km60L AGCM*

Ping Liu; Yoshiyuki Kajikawa; Bin Wang; Akio Kitoh; Tetsuzo Yasunari; Tim Li; H. Annamalai; Xiouhua Fu; Kazuyoshi Kikuchi; Ryo Mizuta; Kavirajan Rajendran; Duane E. Waliser; Daehyun Kim

This study documents the detailed characteristics of the tropical intraseasonal variability (TISV) in the MRI-20km60L AGCM that uses a variant of the Arakawa‐Schubert cumulus parameterization. Mean states, power spectra, propagation features, leading EOF modes, horizontal and vertical structures, and seasonality associated with the TISV are analyzed. Results show that the model reproduces the mean states in winds realistically and in convection comparable to that of the observations. However, the simulated TISV is less realistic. It shows low amplitudes in convection and low-level winds in the 30‐60-day band. Filtered anomalies have standing structures. Power spectra and lag correlation of the signals do not propagate dominantly either in the eastward direction during boreal winter or in the northward direction during boreal summer. A combined EOF (CEOF) analysis shows that winds and convection have a loose coupling that cannot sustain the simulated TISV as realistically as that observed. In the composited mature phase of the simulated MJO, the low-level convergence does not lead convection clearly so that the moisture anomalies do not tilt westward in the vertical, indicating that the low-level convergence does not favor the eastward propagation. The less realistic TISV suggests that the representation of cumulus convection needs to be improved in this model.


Monthly Weather Review | 2016

Examining the Predictability of the Stratospheric Sudden Warming of January 2013 Using Multiple NWP Systems

Om P. Tripathi; Mark P. Baldwin; Andrew Charlton-Perez; Martin Charron; Jacob C. H. Cheung; Stephen D. Eckermann; Edwin P. Gerber; D. R. Jackson; Yuhji Kuroda; Andrea A. Lang; Justin McLay; Ryo Mizuta; Carolyn A. Reynolds; Greg Roff; Michael Sigmond; Seok Woo Son; Tim Stockdale

AbstractThe first multimodel study to estimate the predictability of a boreal sudden stratospheric warming (SSW) is performed using five NWP systems. During the 2012/13 boreal winter, anomalous upward propagating planetary wave activity was observed toward the end of December, which was followed by a rapid deceleration of the westerly circulation around 2 January 2013, and on 7 January 2013 the zonal-mean zonal wind at 60°N and 10 hPa reversed to easterly. This stratospheric dynamical activity was followed by an equatorward shift of the tropospheric jet stream and by a high pressure anomaly over the North Atlantic, which resulted in severe cold conditions in the United Kingdom and northern Europe. In most of the five models, the SSW event was predicted 10 days in advance. However, only some ensemble members in most of the models predicted weakening of westerly wind when the models were initialized 15 days in advance of the SSW. Further dynamical analysis of the SSW shows that this event was characterized ...


Geophysical Research Letters | 2015

Effect of air‐sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

Tomomichi Ogata; Ryo Mizuta; Yukimasa Adachi; Hiroyuki Murakami; Tomoaki Ose

Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20–30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20–30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

Collaboration


Dive into the Ryo Mizuta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoji Kusunoki

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Hiromasa Yoshimura

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Tomoaki Ose

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukimasa Adachi

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Hirokazu Endo

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Seiji Yukimoto

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Akira Noda

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masayoshi Ishii

Japan Meteorological Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge