Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryoko Suzuki is active.

Publication


Featured researches published by Ryoko Suzuki.


Mechanisms of Development | 2000

Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in the ventral region of the retina

Ryoko Suzuki; Takafumi Shintani; Hiraki Sakuta; Akira Kato; Takeshi Ohkawara; Noriko Osumi; Masaharu Noda

In the developing retina, a retinoic acid (RA) gradient along the dorso-ventral axis is believed to be a prerequisite for the establishment of dorso-ventral asymmetry. This RA gradient is thought to result from the asymmetrical distribution of RA-generating aldehyde dehydrogenases along the dorso-ventral axis. Here, we identified a novel aldehyde dehydrogenase specifically expressed in the chick ventral retina, using restriction landmark cDNA scanning (RLCS). Since this molecule showed enzymatic activity to produce RA from retinaldehyde, we designated it retinaldehyde dehydrogenase 3 (RALDH-3). Structural similarity suggested that RALDH-3 is the orthologue of human aldehyde dehydrogenase 6. We also isolated RALDH-1 which is expressed in the chick dorsal retina and implicated in RA formation. Raldh-3 was preferentially expressed first in the surface ectoderm overlying the ventral portion of the prospective eye region and then in the ventral retina, earlier than Raldh-1 in chick and mouse embryos. High level expression of Raldh-3 was also observed in the nasal region. In addition, we found that Pax6 mutants are devoid of Raldh-3 expression. These results suggested that Raldh-3 is the key enzyme in the formation of an RA gradient along the dorso-ventral axis during the early eye development, and also in the development of the olfactory system.


European Journal of Neuroscience | 2003

Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization

Junichi Yuasa-Kawada; Ryoko Suzuki; Fumi Kano; Takeshi Ohkawara; Masayuki Murata; Masaharu Noda

During development, cells undergo dynamic morphological changes by rearrangements of the cytoskeleton including microtubules. However, molecular mechanisms underlying the microtubule remodeling between orientated and disoriented formations are almost unknown. Here we found that novel subtypes of collapsin response mediator proteins (CRMP‐As) and the originals (CRMP‐Bs), which occur from the alternative usage of different first coding exons, are involved in this conversion of microtubule patterns. Overexpression of CRMP2A and CRMP2B in chick embryonic fibroblasts induced orientated and disoriented patterns of microtubules, respectively. Moreover, sequential overexpression of another subtype overcame the effect of the former expression of the countersubtype. Overexpression experiments in cultured chick retinae showed that CRMP2B promoted axon branching and suppressed axon elongation of ganglion cells, while CRMP2A blocked these effects when co‐overexpressed. Our findings suggest that the opposing activities of CRMP2A and CRMP2B contribute to the cellular morphogenesis including neuronal axonogenesis through remodeling of microtubule organization.


PLOS ONE | 2008

Expression of SPIG1 Reveals Development of a Retinal Ganglion Cell Subtype Projecting to the Medial Terminal Nucleus in the Mouse

Keisuke Yonehara; Takafumi Shintani; Ryoko Suzuki; Hiraki Sakuta; Yasushi Takeuchi; Kayo Nakamura-Yonehara; Masaharu Noda

Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs) defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1), preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN), superior colliculus, and accessory optic system (AOS). In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN) of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs). Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.


Journal of Biological Chemistry | 2008

Metalloproteinase- and γ-Secretase-mediated Cleavage of Protein-tyrosine Phosphatase Receptor Type Z

Jeremy Pak Hong Chow; Akihiro Fujikawa; Hidetada Shimizu; Ryoko Suzuki; Masaharu Noda

Protein-tyrosine phosphatase receptor type Z (Ptprz) is preferentially expressed in the brain as a major chondroitin sulfate proteoglycan. Three splicing variants, two receptor isoforms and one secretory isoform, are known. Here, we show that the extracellular region of the receptor isoforms of Ptprz are cleaved by metalloproteinases, and subsequently the membrane-tethered fragment is cleaved by presenilin/γ-secretase, releasing its intracellular region into the cytoplasm; of note, the intracellular fragment of Ptprz shows nuclear localization. Administration of GM6001, an inhibitor of metalloproteinases, to mice demonstrated the metalloproteinase-mediated cleavage of Ptprz under physiological conditions. Furthermore, we identified the cleavage sites in the extracellular juxtamembrane region of Ptprz by tumor necrosis factor-α converting enzyme and matrix metalloproteinase 9. This is the first evidence of the metalloproteinase-mediated processing of a receptor-like protein-tyrosine phosphatase in the central nervous system.


PLOS ONE | 2012

Protein Tyrosine Phosphatase Receptor Type Z Negatively Regulates Oligodendrocyte Differentiation and Myelination

Kazuya Kuboyama; Akihiro Fujikawa; Makoto Masumura; Ryoko Suzuki; Masahito Matsumoto; Masaharu Noda

Background Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP) may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP) expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz. Methodology/Principal Findings We found an early onset of the expression of myelin basic protein (MBP), a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE) induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG) peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis. Conclusions/Significance Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS) development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.


Journal of Biological Chemistry | 2011

Consensus Substrate Sequence for Protein-tyrosine Phosphatase Receptor Type Z

Akihiro Fujikawa; Masahide Fukada; Yoshikazu Makioka; Ryoko Suzuki; Jeremy Pak Hong Chow; Masahito Matsumoto; Masaharu Noda

Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.


Scientific Reports | 2016

Small-molecule inhibition of PTPRZ reduces tumor growth in a rat model of glioblastoma

Akihiro Fujikawa; A Nagahira; Hajime Sugawara; Kentaro Ishii; S Imajo; Masahito Matsumoto; Kazuya Kuboyama; Ryoko Suzuki; Naomi Tanga; Masaharu Noda; Susumu Uchiyama; T Tomoo; Atsuto Ogata; Makoto Masumura

Protein tyrosine phosphatase receptor-type Z (PTPRZ) is aberrantly over-expressed in glioblastoma and a causative factor for its malignancy. However, small molecules that selectively inhibit the catalytic activity of PTPRZ have not been discovered. We herein performed an in vitro screening of a chemical library, and identified SCB4380 as the first potent inhibitor for PTPRZ. The stoichiometric binding of SCB4380 to the catalytic pocket was demonstrated by biochemical and mass spectrometric analyses. We determined the crystal structure of the catalytic domain of PTPRZ, and the structural basis of the binding of SCB4380 elucidated by a molecular docking method was validated by site-directed mutagenesis studies. The intracellular delivery of SCB4380 by liposome carriers inhibited PTPRZ activity in C6 glioblastoma cells, and thereby suppressed their migration and proliferation in vitro and tumor growth in a rat allograft model. Therefore, selective inhibition of PTPRZ represents a promising approach for glioma therapy.


The Journal of Neuroscience | 2015

Inactivation of Protein Tyrosine Phosphatase Receptor Type Z by Pleiotrophin Promotes Remyelination through Activation of Differentiation of Oligodendrocyte Precursor Cells

Kazuya Kuboyama; Akihiro Fujikawa; Ryoko Suzuki; Masaharu Noda

Multiple sclerosis (MS) is a progressive neurological disorder associated with myelin destruction and neurodegeneration. Oligodendrocyte precursor cells (OPCs) present in demyelinated lesions gradually fail to differentiate properly, so remyelination becomes incomplete. Protein tyrosine phosphatase receptor type Z (PTPRZ), one of the most abundant protein tyrosine phosphatases expressed in OPCs, is known to suppress oligodendrocyte differentiation and maintain their precursor cell stage. In the present study, we examined the in vivo mechanisms for remyelination using a cuprizone-induced demyelination model. Ptprz-deficient and wild-type mice both exhibited severe demyelination and axonal damage in the corpus callosum after cuprizone feeding. The similar accumulation of OPCs was observed in the lesioned area in both mice; however, remyelination was significantly accelerated in Ptprz-deficient mice after the removal of cuprizone. After demyelination, the expression of pleiotrophin (PTN), an inhibitory ligand for PTPRZ, was transiently increased in mouse brains, particularly in the neurons involved, suggesting its role in promoting remyelination by inactivating PTPRZ activity. In support of this view, oligodendrocyte differentiation was augmented in a primary culture of oligodendrocyte-lineage cells from wild-type mice in response to PTN. In contrast, these cells from Ptprz-deficient mice showed higher oligodendrocyte differentiation without PTN and differentiation was not enhanced by its addition. We further demonstrated that PTN treatment increased the tyrosine phosphorylation of p190 RhoGAP, a PTPRZ substrate, using an established line of OPCs. Therefore, PTPRZ inactivation in OPCs by PTN, which is secreted from demyelinated axons, may be the mechanism responsible for oligodendrocyte differentiation during reparative remyelination in the CNS. SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory disease of the CNS that destroys myelin, the insulation that surrounds axons. Associated damages to oligodendrocytes (the cells that produce myelin) and nerve fibers produce neurological disability. Most patients with MS have an initial relapsing-remitting course for 5–15 years. Remyelination during the early stages of the disease process has been documented; however, the molecular mechanism underlying remyelination has not been understood. Protein tyrosine phosphatase receptor type Z (PTPRZ) is a receptor-like protein tyrosine phosphatase preferentially expressed in the CNS. This study shows that pleiotrophin, an inhibitory ligand for PTPRZ, is transiently expressed and released from demyelinated neurons to inactivate PTPRZ in oligodendrocyte precursor cells present in the lesioned part, thereby allowing their differentiation for remyelination.


Development Growth & Differentiation | 2008

Retrovirus vector-mediated gene transfer into the chick optic vesicle by in ovo electroporation

Hiraki Sakuta; Ryoko Suzuki; Masaharu Noda

Owing to its external position in the embryo, the chick eye has been used as a readily accessible model for studying the molecular mechanisms behind the patterning of the central nervous system. Although methods of genetic analysis have not been established as in the mouse, the chick is convenient for analyzing the functions of genes by in ovo electroporation of retroviral vectors. In this review, we describe the retroviral vector‐mediated transfer of genes into the chick optic vesicle by in ovo electroporation. A rapid, efficient, and sustained expression of transgenes is achieved by this approach.


Journal of Biological Chemistry | 2016

Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION.

Kazuya Kuboyama; Akihiro Fujikawa; Ryoko Suzuki; Naomi Tanga; Masaharu Noda

Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5–10 (P5–P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding.

Collaboration


Dive into the Ryoko Suzuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiraki Sakuta

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Jeremy Pak Hong Chow

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Junichi Yuasa

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Masakazu Takahashi

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Takeshi Y. Hiyama

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keisuke Yonehara

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge