Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryosuke Kaneko is active.

Publication


Featured researches published by Ryosuke Kaneko.


Journal of Biological Chemistry | 2008

Relationship between DNA Methylation States and Transcription of Individual Isoforms Encoded by the Protocadherin-α Gene Cluster

Masahumi Kawaguchi; Tomoko Toyama; Ryosuke Kaneko; Teruyoshi Hirayama; Yoshimi Kawamura; Takeshi Yagi

The protocadherin-α (Pcdh-α) gene encodes diverse transmembrane proteins that are differentially expressed in individual neurons in the vertebrate central nervous system. The Pcdh-α genomic structure contains variable first exons, each regulated by its own promoter. Here, we investigated the effect of DNA methylation on gene regulation in the Pcdh-α gene cluster. We studied two mouse cell lines, C1300 and M3, that expressed different combinations of Pcdh-α isoforms and found that 1) the transcription of specific Pcdh-α isoforms correlated significantly with the methylation state of the promoter and the 5′ (but not the 3′) region of the first exon and 2) mosaic or mixed methylation states of the promoters were associated with both active and inactive transcription. Demethylation of C1300 cells up-regulated all of the Pcdh-α isoforms, and, in a promoter assay, hypermethylation of the promoters repressed their transcriptional activity. Cell lines subcloned from the demethylated C1300 cells transcribed different combinations of Pcdh-α isoforms than the parental, nondemethylated cells, and the promoters showed differential mosaic or mixed methylation patterns. In vivo, the promoter and 5′-regions of the Pcdh-αC1 and αC2 exons, which are transcribed in all neurons, were extensively hypomethylated. In contrast, the promoters of the Pcdh-α1 to -α12 isoforms, which are transcribed differentially by individual Purkinje cells, exhibited mosaic methylation patterns. Overall, our results demonstrated that mosaic or mixed DNA methylation states in the promoter and 5′-region of the first exon may help regulate differential Pcdh-α transcription and that hypermethylation is sufficient to repress transcription.


Journal of Biological Chemistry | 2011

Identification of the Cluster Control Region for the Protocadherin-β Genes Located beyond the Protocadherin-γ Cluster

Shinnichi Yokota; Teruyoshi Hirayama; Keizo Hirano; Ryosuke Kaneko; Shunsuke Toyoda; Yoshimi Kawamura; Masumi Hirabayashi; Takahiro Hirabayashi; Takeshi Yagi

The clustered protocadherins (Pcdhs), Pcdh-α, -β, and -γ, are transmembrane proteins constituting a subgroup of the cadherin superfamily. Each Pcdh cluster is arranged in tandem on the same chromosome. Each of the three Pcdh clusters shows stochastic and combinatorial expression in individual neurons, thus generating a hugely diverse set of possible cell surface molecules. Therefore, the clustered Pcdhs are candidates for determining neuronal molecular diversity. Here, we showed that the targeted deletion of DNase I hypersensitive (HS) site HS5-1, previously identified as a Pcdh-α regulatory element in vitro, affects especially the expression of specific Pcdh-α isoforms in vivo. We also identified a Pcdh-β cluster control region (CCR) containing six HS sites (HS16, 17, 17′, 18, 19, and 20) downstream of the Pcdh-γ cluster. This CCR comprehensively activates the expression of the Pcdh-β gene cluster in cis, and its deletion dramatically decreases their expression levels. Deleting the CCR nonuniformly down-regulates some Pcdh-γ isoforms and does not affect Pcdh-α expression. Thus, the CCR effect extends beyond the 320-kb region containing the Pcdh-γ cluster to activate the upstream Pcdh-β genes. Thus, we concluded that the CCR is a highly specific regulatory unit for Pcdh-β expression on the clustered Pcdh genomic locus. These findings suggest that each Pcdh cluster is controlled by distinct regulatory elements that activate their expression and that the stochastic gene regulation of the clustered Pcdhs is controlled by the complex chromatin architecture of the clustered Pcdh locus.


Frontiers in Molecular Neuroscience | 2012

Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems

Keizo Hirano; Ryosuke Kaneko; Takeshi Izawa; Masahumi Kawaguchi; Takashi Kitsukawa; Takeshi Yagi

The generation of complex neural circuits depends on the correct wiring of neurons with diverse individual characteristics. To understand the complexity of the nervous system, the molecular mechanisms for specifying the identity and diversity of individual neurons must be elucidated. The clustered protocadherins (Pcdh) in mammals consist of approximately 50 Pcdh genes (Pcdh-α, Pcdh-β, and Pcdh-γ) that encode cadherin-family cell surface adhesion proteins. Individual neurons express a random combination of Pcdh-α and Pcdh-γ, whereas the expression patterns for the Pcdh-β genes, 22 one-exon genes in mouse, are not fully understood. Here we show that the Pcdh-β genes are expressed in a 3′-polyadenylated form in mouse brain. In situ hybridization using a pan-Pcdh-β probe against a conserved Pcdh-β sequence showed widespread labeling in the brain, with prominent signals in the olfactory bulb, hippocampus, and cerebellum. In situ hybridization with specific probes for individual Pcdh-β genes showed their expression to be scattered in Purkinje cells from P10 to P150. The scattered expression patterns were confirmed by performing a newly developed single-cell 3′-RACE analysis of Purkinje cells, which clearly demonstrated that the Pcdh-β genes are expressed monoallelically and combinatorially in individual Purkinje cells. Scattered expression patterns of individual Pcdh-β genes were also observed in pyramidal neurons in the hippocampus and cerebral cortex, neurons in the trigeminal and dorsal root ganglion, GABAergic interneurons, and cholinergic neurons. Our results extend previous observations of diversity at the single-neuron level generated by Pcdh expression and suggest that the Pcdh-β cluster genes contribute to specifying the identity and diversity of individual neurons.


The Journal of Neuroscience | 2013

Critical Role of the Astrocyte for Functional Remodeling in Contralateral Hemisphere of Somatosensory Cortex after Stroke

Yusuke Takatsuru; Kei Eto; Ryosuke Kaneko; Hiroko Masuda; Noriaki Shimokawa; Noriyuki Koibuchi; Junichi Nabekura

After ischemic stroke, the corresponding area contralateral to the lesion may partly compensate for the loss of function. We previously reported the remodeling of neuronal circuits in the contralateral somatosensory cortex (SSC) during the first week after infarction for processing bilateral information, resulting in functional compensation. However, the underlying processes in the contralateral hemisphere after stroke have not yet been fully elucidated. Recent studies have shown that astrocytes may play critical roles in synaptic reorganization and functional compensation after a stroke. Thus, we aim to clarify the contribution of astrocytes using a rodent stroke model. In vivo calcium imaging showed a significantly large number of astrocytes in the contralateral SSC responding to ipsilateral limb stimulation at the first week after infarction. Simultaneously, extracellular glutamine level increased, indicating the involvement of astrocytes in the conversion of glutamate to glutamine, which may be an important process for functional recovery. This hypothesis was supported further by the observation that application of (2S,3S)-3-{3-[4-(trifluoromethyl)benzoylamino]benzyloxy} aspartate, a glial glutamate transporter blocker, disturbed the functional recovery. These findings indicate the involvement of astrocytes in functional remodeling/recovery in the area contralateral to the lesion. Our study has provided new insights into the mechanisms underlying synaptic remodeling after cerebral infarction, which contributes to the development of effective therapeutic approaches for patients after a stroke.


Neuropsychopharmacology | 2015

Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes

Kazuyuki Fujihara; Hideki Miwa; Toshikazu Kakizaki; Ryosuke Kaneko; Masahiko Mikuni; Chiyoko Tanahira; Nobuaki Tamamaki; Yuchio Yanagawa

Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia.


Journal of Bone and Mineral Metabolism | 2010

Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism

Atsushi Suzuki; Patrick Ammann; Keiko Nishiwaki-Yasuda; Sahoko Sekiguchi; Shogo Asano; Shizuko Nagao; Ryosuke Kaneko; Masumi Hirabayashi; Yutaka Oiso; Mitsuyasu Itoh; Joseph Caverzasio

The type III inorganic phosphate (Pi) transporter Pit-1 was previously found to be preferentially expressed in developing long bones. Several studies also described a regulation of its expression in cultured bone cells by osteotropic factors, suggesting a role of this transporter in bone metabolism. In the present study, we investigated the effects of the transgenic overexpression of Pit-1 in Wistar male rats on calcium phosphate and bone metabolism. A threefold increase and doubling of Pi transport activity were recorded in primary cultured osteoblastic cells derived from calvaria of two transgenic (Tg) lines compared with wild-type littermates (WT), respectively. Skeletal development was not affected by the transgene, and bone mass, analyzed by DXA, was slightly decreased in Tg compared with WT. Enhanced Pi uptake in calvaria-derived osteoblasts from Pit-1 Tg was associated with a significantly decreased expression of alkaline phosphatase activity and a normal deposition and calcification of the collagenous matrix. In 4-month-old adult Tg rats, serum Pi and renal Pi transport were increased compared with WT. The decrease of serum Ca concentration was associated with increased serum parathyroid hormone levels. Variations in serum Pi in Pit-1 Tg rats were negatively correlated with serum fibroblast growth factor-23, whereas 1,25-dihydroxyvitamin D3 was not affected by Pit-1 overexpression. In conclusion, transgenic Pit-1 overexpression in rats affected bone and calcium phosphate metabolism. It also decreased alkaline phosphatase activity in osteoblasts without influencing bone matrix mineralization as well as skeletal development.


Nature Protocols | 2006

Split single-cell RT-PCR analysis of Purkinje cells

Shigeyuki Esumi; Ryosuke Kaneko; Yoshimi Kawamura; Takeshi Yagi

This protocol details a method for analyzing the expression of multiple genes from a single Purkinje neuron, including the determination of whether the gene expression is monoallelic or biallelic. The protocol describes how to extract a single, living Purkinje cell for reverse transcription, divide the cDNAs into three equal samples and subject those to triplicate amplification of multiple targets by two rounds of PCR (first a multiplex PCR then a gene-specific nested PCR) and finally discriminate the allelic expression of the transcript by direct sequencing of the PCR products. In optimal conditions, this method permits the analysis of the expression of 18 genes in a single Purkinje cell. This protocol can be completed in 5–6 d.


Frontiers in Molecular Neuroscience | 2016

Distinct and Cooperative Functions for the Protocadherin-α, -β and -γ Clusters in Neuronal Survival and Axon Targeting

Sonoko Hasegawa; Makiko Kumagai; Mitsue Hagihara; Hiroshi Nishimaru; Keizo Hirano; Ryosuke Kaneko; Atsushi Okayama; Teruyoshi Hirayama; Makoto Sanbo; Masumi Hirabayashi; Masahiko Watanabe; Takahiro Hirabayashi; Takeshi Yagi

The clustered protocadherin (Pcdh) genes are divided into the Pcdhα, Pcdhβ, and Pcdhγ clusters. Gene-disruption analyses in mice have revealed the in vivo functions of the Pcdhα and Pcdhγ clusters. However, all Pcdh protein isoforms form combinatorial cis-hetero dimers and enter trans-homophilic interactions. Here we addressed distinct and cooperative functions in the Pcdh clusters by generating six cluster-deletion mutants (Δα, Δβ, Δγ, Δαβ, Δβγ, and Δαβγ) and comparing their phenotypes: Δα, Δβ, and Δαβ mutants were viable and fertile; Δγ mutants lived less than 12 h; and Δβγ and Δαβγ mutants died shortly after birth. The Pcdhα, Pcdhβ, and Pcdhγ clusters were individually and cooperatively important in olfactory-axon targeting and spinal-cord neuron survival. Neurodegeneration was most severe in Δαβγ mutants, indicating that Pcdhα and Pcdhβ function cooperatively for neuronal survival. The Pcdhα, Pcdhβ, and Pcdhγ clusters share roles in olfactory-axon targeting and neuronal survival, although to different degrees.


BMC Biology | 2016

Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins

Etsuko Tarusawa; Makoto Sanbo; Atsushi Okayama; Toshio Miyashita; Takashi Kitsukawa; Teruyoshi Hirayama; Takahiro Hirabayashi; Sonoko Hasegawa; Ryosuke Kaneko; Shunsuke Toyoda; Toshihiro Kobayashi; Megumi Kato-Itoh; Hiromitsu Nakauchi; Masumi Hirabayashi; Takeshi Yagi; Yumiko Yoshimura

BackgroundThe specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections.ResultsWe show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity.ConclusionsOur results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.


Frontiers in Cellular Neuroscience | 2014

Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice

Mikiko Kayakabe; Toshikazu Kakizaki; Ryosuke Kaneko; Atsushi Sasaki; Yoichi Nakazato; Koji Shibasaki; Yasuki Ishizaki; Hiromitsu Saito; Noboru Suzuki; Nobuhiko Furuya; Yuchio Yanagawa

γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the adult mammalian central nervous system and plays modulatory roles in neural development. The vesicular GABA transporter (VGAT) is an essential molecule for GABAergic neurotransmission due to its role in vesicular GABA release. Cerebellar Purkinje cells (PCs) are GABAergic projection neurons that are indispensable for cerebellar function. To elucidate the significance of VGAT in cerebellar PCs, we generated and characterized PC-specific VGAT knockout (L7-VGAT) mice. VGAT mRNAs and proteins were specifically absent in the 40-week-old L7-VGAT PCs. The morphological characteristics, such as lamination and foliation of the cerebellar cortex, of the L7-VGAT mice were similar to those of the control littermate mice. Moreover, the protein expression levels and patterns of pre- (calbindin and parvalbumin) and postsynaptic (GABA-A receptor α1 subunit and gephyrin) molecules between the L7-VGAT and control mice were similar in the deep cerebellar nuclei that receive PC projections. However, the L7-VGAT mice performed poorly in the accelerating rotarod test and displayed ataxic gait in the footprint test. The L7-VGAT mice also exhibited severer ataxia as VGAT deficits progressed. These results suggest that VGAT in cerebellar PCs is not essential for the rough maintenance of cerebellar structure, but does play an important role in motor coordination. The L7-VGAT mice are a novel model of ataxia without PC degeneration, and would also be useful for studying the role of PCs in cognition and emotion.

Collaboration


Dive into the Ryosuke Kaneko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masumi Hirabayashi

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge