Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryosuke Takii is active.

Publication


Featured researches published by Ryosuke Takii.


Molecular Biology of the Cell | 2010

A Novel Mouse HSF3 Has the Potential to Activate Nonclassical Heat-Shock Genes during Heat Shock

Mitsuaki Fujimoto; Naoki Hayashida; Takuma Katoh; Kouji Oshima; Toyohide Shinkawa; Ke Tan; Sachiye Inouye; Ryosuke Takii; Akira Nakai

HSF1 is a master regulator of the heat-shock response in mammalian cells, whereas in avian cells, HSF3, which was considered as an avian-specific factor, is required for the expression of classical heat-shock genes. Here, the authors identify mouse HSF3, and demonstrate that it has the potential to activate only nonclassical heat-shock genes.


Journal of Immunology | 2010

Heat Shock Transcription Factor 1 Inhibits Expression of IL-6 through Activating Transcription Factor 3

Ryosuke Takii; Sachiye Inouye; Mitsuaki Fujimoto; Tamami Nakamura; Toyohide Shinkawa; Ke Tan; Naoki Hayashida; Hitoshi Ichikawa; Tsonwin Hai; Akira Nakai

The febrile response is a complex physiological reaction to disease, including a cytokine-mediated increase in body temperature and the activation of inflammatory systems. Fever has beneficial roles in terms of disease prognosis, partly by suppressing the expression of inflammatory cytokines. However, the molecular mechanisms underlining the fever-mediated suppression of inflammatory gene expression have not been clarified. In this study, we showed that heat shock suppresses LPS-induced expression of IL-6, a major pyrogenic cytokine, in mouse embryonic fibroblasts and macrophages. Heat shock transcription factor 1 (HSF1) activated by heat shock induced the expression of activating transcription factor (ATF) 3, a negative regulator of IL-6, and ATF3 was necessary for heat-mediated suppression of IL-6, indicating a fever-mediated feedback loop consisting of HSF1 and ATF3. A comprehensive analysis of inflammatory gene expression revealed that heat pretreatment suppresses LPS-induced expression of most genes (86%), in part (67%) via ATF3. When HSF1-null and ATF3-null mice were injected with LPS, they expressed much higher levels of IL-6 than wild-type mice, resulting in an exaggerated febrile response. These results demonstrate a novel inhibitory pathway for inflammatory cytokines.


Journal of Biological Chemistry | 2008

Analysis of HSF4 Binding Regions Reveals Its Necessity for Gene Regulation during Development and Heat Shock Response in Mouse Lenses

Mitsuaki Fujimoto; Koji Oshima; Toyohide Shinkawa; Bei Bei Wang; Sachiye Inouye; Naoki Hayashida; Ryosuke Takii; Akira Nakai

Heat shock transcription factors (HSFs) regulate gene expression in response to heat shock and in physiological conditions. In mammals, HSF1 is required for heat-mediated induction of classic heat shock genes; however, we do not know the molecular mechanisms by which HSF4 regulates gene expression or the biological consequences of its binding to chromatin. Here, we identified that HSF4 binds to various genomic regions, including the introns and distal parts of protein-coding genes in vivo in mouse lenses, and a substantial numbers of the regions were also occupied by HSF1 and HSF2. HSF4 regulated expression of some genes at a developmental stage when HSF1 and HSF2 expression decreased. Although HSF4 binding did not affect expression of many genes, it induces demethylated status of histone H3K9 on the binding regions. Unexpectedly, a lot of HSF4 targets were induced by heat shock treatment, and HSF4 is required for induction of a set of non-classic heat shock genes in response to heat shock, in part by facilitating HSF1 binding through chromatin modification. These results suggest novel mechanisms of gene regulation controlled by HSF4 in non-classic heat shock response and in lens development.


Infection and Immunity | 2005

A Functional Virulence Complex Composed of Gingipains, Adhesins, and Lipopolysaccharide Shows High Affinity to Host Cells and Matrix Proteins and Escapes Recognition by Host Immune Systems

Ryosuke Takii; Tomoko Kadowaki; Atsuyo Baba; Takayuki Tsukuba; Kenji Yamamoto

ABSTRACT Arg-gingipain (Rgp) and Lys-gingipain (Kgp) are Porphyromonas gingivalis cysteine proteinases implicated as major virulence factors in pathologies of periodontitis. We purified a 660-kDa cell-associated gingipain complex existing as a homodimer of two catalytically active monomers which comprises their catalytic and adhesin domains. Electron microscopy revealed that the complex was composed of a globular particle with a 10-nm external diameter possessing one or two electron-dense hole-like structures. Two-dimensional gel electrophoresis and immunoblot analyses revealed the association of lipopolysaccharide (LPS) with the catalytic domains and a hemagglutinin domain, Hgp44, of Rgp and Kgp in the complex. The complex significantly degraded human type I collagen and elastin and strongly disrupted viability of human gingival fibroblasts and umbilical vein endotherial cells with an efficiency which was higher than that of the monomeric gingipains. The native complex produced only a small amount of nitrogen dioxide, tumor necrosis factor alpha, and interleukin-6 by macrophages, whereas the heat-denatured complex resulted in increased production. Inhibition of the proteolytic activities of the gingipain complex did not up-regulate the cytokine production, indicating that the functional domains in LPS are structurally masked by the complex proteins. These results indicate the importance of the complex in evasion of host defense mechanisms as well as in host tissue breakdown.


The EMBO Journal | 2010

Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT

Naoki Hayashida; Mitsuaki Fujimoto; Ke Tan; Toyohide Shinkawa; Liangping Li; Hitoshi Ichikawa; Ryosuke Takii; Akira Nakai

Heat shock transcription factor 1 (HSF1) is an important regulator of protein homeostasis (proteostasis) by controlling the expression of major heat shock proteins (Hsps) that facilitate protein folding. However, it is unclear whether other proteostasis pathways are mediated by HSF1. Here, we identified novel targets of HSF1 in mammalian cells, which suppress the aggregation of polyglutamine (polyQ) protein. Among them, we show that one of the nuclear factor of activated T cells (NFAT) proteins, NFATc2, significantly inhibits polyQ aggregation in cells and is required for HSF1‐mediated suppression of polyQ aggregation. NFAT deficiency accelerated disease progression including aggregation of a mutant polyQ‐huntingtin protein and shortening of lifespan in R6/2 Huntingtons disease mice. Furthermore, we found that HSF1 and NFAT cooperatively induce the expression of the scaffold protein PDZK3 and αB‐crystallin, which facilitate the degradation of polyQ protein. These results show the first mechanistic basis for the observation that HSF1 has a much more profound effect on proteostasis than individual Hsp or combination of different Hsps, and suggest a new pathway for ameliorating protein‐misfolding diseases.


Molecular Cell | 2012

RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT.

Mitsuaki Fujimoto; Eiichi Takaki; Ryosuke Takii; Ke Tan; Naoki Hayashida; Shun-ichiro Iemura; Tohru Natsume; Akira Nakai

Transcription factor access to regulatory elements is prevented by the nucleosome. Heat shock factor 1 (HSF1) is a winged helix transcription factor that plays roles in control and stressed conditions by gaining access to target elements, but mechanisms of HSF1 access are not well known in mammalian cells. Here, we show the physical interaction between the wing motif of human HSF1 and replication protein A (RPA), which is involved in DNA metabolism. Depletion of RPA1 abolishes HSF1 access to the promoter of HSP70 in unstressed condition and delays its rapid activation in response to heat shock. The HSF1-RPA complex leads to preloading of RNA polymerase II and opens the chromatin structure by recruiting a histone chaperone, FACT. Furthermore, this interaction is required for melanoma cell proliferation. These results provide a mechanism of constitutive HSF1 access to nucleosomal DNA, which is important for both basal and inducible gene expression.


Journal of Biological Chemistry | 2007

Cathepsin E Deficiency Induces a Novel Form of Lysosomal Storage Disorder Showing the Accumulation of Lysosomal Membrane Sialoglycoproteins and the Elevation of Lysosomal pH in Macrophages

Michiyo Yanagawa; Takayuki Tsukuba; Tsuyoshi Nishioku; Yoshiko Okamoto; Kuniaki Okamoto; Ryosuke Takii; Yoshihiro Terada; Keiichi I. Nakayama; Tomoko Kadowaki; Kenji Yamamoto

Cathepsin E, an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, has an important role in immune responses. However, little is known about the precise roles of cathepsin E in this system. Here we report that cathepsin E deficiency (CatE-/-) leads to a novel form of lysosome storage disorder in macrophages, exhibiting the accumulation of the two major lysosomal membrane sialoglycoproteins LAMP-1 and LAMP-2 and the elevation of lysosomal pH. These striking features were also found in wild-type macrophages treated with pepstatin A and Ascaris inhibitor. Whereas there were no obvious differences in their expression, biosynthesis, and trafficking between wild-type and CatE-/- macrophages, the degradation rates of these two membrane proteins were apparently decreased as a result of cathepsin E deficiency. Because there was no difference in the vacuolar-type H+-ATPase activity in both cell types, the elevated lysosomal pH in CatE-/- macrophages is most likely due to the accumulation of these lysosomal membrane glycoproteins highly modified with acidic monosaccharides, thereby leading to the disruption of non-proton factors controlling lysosomal pH. Furthermore, the selective degradation of LAMP-1 and LAMP-2, as well as LIMP-2, was also observed by treatment of the lysosomal membrane fraction isolated from wild-type macrophages with purified cathepsin E at pH 5. Our results thus suggest that cathepsin E is important for preventing the accumulation of these lysosomal membrane sialoglycoproteins that can induce a new form of lysosomal storage disorder.


Nature Immunology | 2007

T helper type 2 differentiation and intracellular trafficking of the interleukin 4 receptor-|[alpha]| subunit controlled by the Rac activator Dock2

Yoshihiko Tanaka; Shinjiro Hamano; Kazuhito Gotoh; Yuzo Murata; Yuya Kunisaki; Akihiko Nishikimi; Ryosuke Takii; Makiko Kawaguchi; Ayumi Inayoshi; Sadahiko Masuko; Kunisuke Himeno; Takehiko Sasazuki; Yoshinori Fukui

The lineage commitment of CD4+ T cells is coordinately regulated by signals through the T cell receptor and cytokine receptors, yet how these signals are integrated remains elusive. Here we find that mice lacking Dock2, a Rac activator in lymphocytes, developed allergic disease through a mechanism dependent on CD4+ T cells and the interleukin 4 receptor (IL-4R). Dock2-deficient CD4+ T cells showed impaired antigen-driven downregulation of IL-4Rα surface expression, resulting in sustained IL-4R signaling and excessive T helper type 2 responses. Dock2 was required for T cell receptor–mediated phosphorylation of the microtubule-destabilizing protein stathmin and for lysosomal trafficking and the degradation of IL-4Rα. Thus, Dock2 links T cell receptor signals to downregulation of IL-4Rα to control the lineage commitment of CD4+ T cells.


Molecular Biology of the Cell | 2011

Heat shock factor 2 is required for maintaining proteostasis against febrile range thermal stress and polyglutamine aggregation

Toyohide Shinkawa; Ke Tan; Mitsuaki Fujimoto; Naoki Hayashida; Kaoru Yamamoto; Eiichi Takaki; Ryosuke Takii; Sachiye Inouye; Valérie Mezger; Akira Nakai

HSF2 regulates proteostasis capacity against febrile-range thermal stress, which provides temperature-dependent mechanisms of cellular adaptation to thermal stress. Furthermore, HSF2 has a strong impact on disease progression of Huntingtons disease R6/2 mice, suggesting that it could be a promising therapeutic target for protein misfolding diseases.


Frontiers in Bioscience | 2007

A role for gingipains in cellular responses and bacterial survival in Porphyromonas gingivalis-infected cells.

Tomoko Kadowaki; Ryosuke Takii; Yamatake K; Tomoyo Kawakubo; Takayuki Tsukuba; Kenji Yamamoto

Porphyromonas gingivalis is one of the primary etiologic agents of adult periodontitis and is known to produce a unique class of cysteine proteinases, termed gingipains. They consist of Arg-gingipain (Rgp) and Lys-gingipain (Kgp) and exist in the cell-associated and secreted forms. In the current review, we summarize recent knowledge on the pathophysiological role of gingipains in the virulence of P. gingivalis including host cell responses to bacterial infection and its evasion from host defense mechanisms. Studies with various P. gingivalis mutants deficient in Rgp- and/or Kgp-encoding genes and proteinase inhibitors specific for each enzyme have demonstrated that both enzymes play a substantial role in disruption of host defense mechanisms by the bacterium and its survival in vivo. Gingipains are also important in the bacterium-mediated host cell responses and the subsequent intracellular signaling in the infected cells. P. gingivalis can evade the autophagic pathway and instead directly traffic to the endocytic pathway to lysosomes in the infected cells. In addition, gingipains play an important role in acquiring resistance against destruction of the bacterium in the lysosomal system. Furthermore, a major form of the cell-associated gingipain complex composed of the catalytic domains of both enzymes, their adhesin domains, phospholipids, and lipopolysaccharide has recently been isolated and shown to contribute the bacterial evasion of host defense mechanisms and the host tissue breakdown.

Collaboration


Dive into the Ryosuke Takii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Kadowaki

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Tan

Yamaguchi University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge