Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryotaro Hara is active.

Publication


Featured researches published by Ryotaro Hara.


Biochemical and Biophysical Research Communications | 2009

Characterization of novel 2-oxoglutarate dependent dioxygenases converting l-proline to cis-4-hydroxy-l-proline

Ryotaro Hara; Kuniki Kino

Hydroxyprolines are valuable chiral building blocks for organic synthesis of pharmaceuticals. Several microorganisms producing L-proline trans-4- and cis-3-hydroxylase were discovered and these enzymes were applied to the industrial production of trans-4- and cis-3-hydroxy-L-proline, respectively. Meanwhile, other hydroxyproline isomers, cis-4- and trans-3-hydroxy-L-proline, were not easily available because the corresponding hydroxylase have not been discovered. Herein we report novel L-proline cis-4-hydroxylases converting free L-proline to cis-4-hydroxy-L-proline. Two genes encoding uncharacterized proteins from Mesorhizobium loti and Sinorhizobium meliloti were cloned and overexpressed in Escherichia coli, respectively. The functions of purified proteins were investigated in detail, and consequently we detected L-proline cis-4-hydroxylase activity in both proteins. Likewise L-proline trans-4-, cis-3-hydroxylase and prolyl hydroxylase, these enzymes belonged to a 2-oxoglutarate dependent dioxygenase family and required a non-heme ferrous ion. Although their reaction mechanisms were similar to other hydroxylases, the amino acid sequence homology was not observed (less than 40%).


Journal of Bioscience and Bioengineering | 2009

Enhancement of l-tryptophan 5-hydroxylation activity by structure-based modification of l-phenylalanine 4-hydroxylase from Chromobacterium violaceum

Kuniki Kino; Ryotaro Hara; Ai Nozawa

The objective of this study was to enhance l-tryptophan hydroxylation activity of l-phenylalanine 4-hydroxylase. It had been known that l-phenylalanine 4-hydroxylase from Chromobacterium violaceum could convert l-tryptophan to 5-hydroxy-l-tryptophan and l-phenylalanine to l-tyrosine; however, the activity for l-tryptophan was extremely low compared to l-phenylalanine activity levels. We used the information on the crystal structures of aromatic amino acid hydroxylases to generate C. violaceuml-phenylalanine 4-hydroxylase with high l-tryptophan hydroxylating activity. In silico structural modeling analysis suggested that hydrophobic and/or stacking interactions with the substrate and cofactor at L101 and W180 in C. violaceuml-phenylalanine 4-hydroxylase would increase hydroxylation activity. Based on this hypothesis, we introduced a saturation mutagenesis towards these sites followed by the evaluation of 5-hydroxy-l-tryptophan productivity using a modified Gibbs assay. Three and nine positive mutants were obtained from the L101 and W180 mutant libraries, respectively. Among the mutants, L101Y and W180F showed the highest l-tryptophan hydroxylation activity at the respective residues. Steady-state kinetic analysis revealed that k(cat) values for l-tryptophan hydroxylation were increased from 0.40 (wild-type) to 1.02 (L101Y) and 0.51 s(-1) (W180F). In addition, the double mutant (L101Y-W180F) displayed higher l-tryptophan hydroxylation activity than the wild-type and the W180F and L101Y mutants. The k(cat) value of L101Y-W180F increased to 2.08 s(-1), showing a 5.2-fold increase compared to wild-type enzyme levels.


ACS Synthetic Biology | 2015

Refined Regio- and Stereoselective Hydroxylation of l-Pipecolic Acid by Protein Engineering of l-Proline cis-4-Hydroxylase Based on the X-ray Crystal Structure.

Kento Koketsu; Yasuhito Shomura; Kei Moriwaki; Mikiro Hayashi; Satoshi Mitsuhashi; Ryotaro Hara; Kuniki Kino; Yoshiki Higuchi

Enzymatic regio- and stereoselective hydroxylation are valuable for the production of hydroxylated chiral ingredients. Proline hydroxylases are representative members of the nonheme Fe(2+)/α-ketoglutarate-dependent dioxygenase family. These enzymes catalyze the conversion of L-proline into hydroxy-L-prolines (Hyps). L-Proline cis-4-hydroxylases (cis-P4Hs) from Sinorhizobium meliloti and Mesorhizobium loti catalyze the hydroxylation of L-proline, generating cis-4-hydroxy-L-proline, as well as the hydroxylation of L-pipecolic acid (L-Pip), generating two regioisomers, cis-5-Hypip and cis-3-Hypip. To selectively produce cis-5-Hypip without simultaneous production of two isomers, protein engineering of cis-P4Hs is required. We therefore carried out protein engineering of cis-P4H to facilitate the conversion of the majority of L-Pip into the cis-5-Hypip isomer. We first solved the X-ray crystal structure of cis-P4H in complex with each of L-Pro and L-Pip. Then, we conducted three rounds of directed evolution and successfully created a cis-P4H triple mutant, V97F/V95W/E114G, demonstrating the desired regioselectivity toward cis-5-Hypip.


Journal of Biotechnology | 2014

Identification and characterization of 2-oxoglutarate-dependent dioxygenases catalyzing selective cis-hydroxylation of proline and pipecolinic acid from actinomycetes.

Ryotaro Hara; Naoko Uchiumi; Kuniki Kino

Microbial hydroxylases were screened for the capacity to effect direct hydroxylation of proline and pipecolinic acid, based on genomic information. Of the eight candidates screened, 2-oxoglutarate-dependent hydroxylase from Streptosporangium roseum NBRC 3776(T) and aspartyl/asparaginyl β-hydroxylase from Catenulispora acidiphila NBRC 102108(T) showed both proline and pipecolinic acid hydroxylation activities. In the case of l-proline hydroxylation, both enzymes catalyzed the simultaneous formation of cis-3-hydroxy-l-proline and cis-4-hydroxy-l-proline, and cis-4-hydroxy-l-proline was preferentially produced. In the case of l-pipecolinic acid hydroxylation, both enzymes catalyzed the simultaneous formation of cis-3-hydroxy-l-pipecolinic acid and cis-5-hydroxy-l-pipecolinic acid. While the former enzyme preferentially produced cis-3-hydroxy-l-pipecolinic acid, the latter enzyme preferentially produced cis-5-hydroxy-l-pipecolinic acid.


Bioscience, Biotechnology, and Biochemistry | 2014

Regio- and stereoselective oxygenation of proline derivatives by using microbial 2-oxoglutarate-dependent dioxygenases

Ryotaro Hara; Naoko Uchiumi; Naoko Okamoto; Kuniki Kino

We evaluated the substrate specificities of four proline cis-selective hydroxylases toward the efficient synthesis of proline derivatives. In an initial evaluation, 15 proline-related compounds were investigated as substrates. In addition to l-proline and l-pipecolinic acid, we found that 3,4-dehydro-l-proline, l-azetidine-2-carboxylic acid, cis-3-hydroxy-l-proline, and l-thioproline were also oxygenated. Subsequently, the product structures were determined, revealing cis-3,4-epoxy-l-proline, cis-3-hydroxy-l-azetidine-2-carboxylic acid, and 2,3-cis-3,4-cis-3,4-dihydroxy-l-proline.


Scientific Reports | 2016

Functional characterization of aconitase X as a cis -3-hydroxy-L-proline dehydratase

Seiya Watanabe; Kunihiko Tajima; Satoshi Fujii; Fumiyasu Fukumori; Ryotaro Hara; Rio Fukuda; Mao Miyazaki; Kuniki Kino; Yasuo Watanabe

In the aconitase superfamily, which includes the archetypical aconitase, homoaconitase, and isopropylmalate isomerase, only aconitase X is not functionally annotated. The corresponding gene (LhpI) was often located within the bacterial gene cluster involved in L-hydroxyproline metabolism. Screening of a library of (hydroxy)proline analogues revealed that this protein catalyzes the dehydration of cis-3-hydroxy-L-proline to Δ1-pyrroline-2-carboxylate. Furthermore, electron paramagnetic resonance and site-directed mutagenic analyses suggests the presence of a mononuclear Fe(III) center, which may be coordinated with one glutamate and two cysteine residues. These properties were significantly different from those of other aconitase members, which catalyze the isomerization of α- to β-hydroxy acids, and have a [4Fe-4S] cluster-binding site composed of three cysteine residues. Bacteria with the LhpI gene could degrade cis-3-hydroxy-L-proline as the sole carbon source, and LhpI transcription was up-regulated not only by cis-3-hydroxy-L-proline, but also by several isomeric 3- and 4-hydroxyprolines.


Applied and Environmental Microbiology | 2015

One-Pot Production of l-threo-3-Hydroxyaspartic Acid Using Asparaginase-Deficient Escherichia coli Expressing Asparagine Hydroxylase of Streptomyces coelicolor A3(2)

Ryotaro Hara; Masashi Nakano; Kuniki Kino

ABSTRACT We developed a novel process for efficient synthesis of l-threo-3-hydroxyaspartic acid (l-THA) using microbial hydroxylase and hydrolase. A well-characterized mutant of asparagine hydroxylase (AsnO-D241N) and its homologous enzyme (SCO2693-D246N) were adaptable to the direct hydroxylation of l-aspartic acid; however, the yields were strictly low. Therefore, the highly stable and efficient wild-type asparagine hydroxylases AsnO and SCO2693 were employed to synthesize l-THA. By using these recombinant enzymes, l-THA was obtained by l-asparagine hydroxylation by AsnO followed by amide hydrolysis by asparaginase via 3-hydroxyasparagine. Subsequently, the two-step reaction was adapted to one-pot bioconversion in a test tube. l-THA was obtained in a small amount with a molar yield of 0.076% by using intact Escherichia coli expressing the asnO gene, and thus, two asparaginase-deficient mutants of E. coli were investigated. A remarkably increased l-THA yield of 8.2% was obtained with the asparaginase I-deficient mutant. When the expression level of the asnO gene was enhanced by using the T7 promoter in E. coli instead of the lac promoter, the l-THA yield was significantly increased to 92%. By using a combination of the E. coli asparaginase I-deficient mutant and the T7 expression system, a whole-cell reaction in a jar fermentor was conducted, and consequently, l-THA was successfully obtained from l-asparagine with a maximum yield of 96% in less time than with test tube-scale production. These results indicate that asparagine hydroxylation followed by hydrolysis would be applicable to the efficient production of l-THA.


Analytical Biochemistry | 2015

Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.

Ryotaro Hara; Ryohei Suzuki; Kuniki Kino

We demonstrated the usefulness of a hydroxamate-based colorimetric assay for predicting amide bond formation (through an aminoacyl-AMP intermediate) by the adenylation domain of nonribosomal peptide synthetases. By using a typical adenylation domain of tyrocidine synthetase (involved in tyrocidine biosynthesis), we confirmed the correlation between the absorbance at 490 nm of the l-Trp-hydroxamate-Fe(3+) complex and the formation of l-Trp-l-Pro, where l-Pro was used instead of hydroxylamine. Furthermore, this assay was adapted to the adenylation domains of surfactin synthetase (involved in surfactin biosynthesis) and bacitracin synthetase (involved in bacitracin biosynthesis). Consequently, the formation of various aminoacyl l-Pro formations was observed.


Scientific Reports | 2018

A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism

Ryotaro Hara; Kengo Hirai; Shin Suzuki; Kuniki Kino

Amide bond formation serves as a fundamental reaction in chemistry, and is practically useful for the synthesis of peptides, food additives, and polymers. However, current methods for amide bond formation essentially generate wastes and suffer from poor atom economy under harsh conditions. To solve these issues, we demonstrated an alternative synthesis method for diverse tryptophyl-N-alkylamides by the combination of the first adenylation domain of tyrocidine synthetase 1 with primary or secondary amines as nucleophiles. Moreover, the physiological role of this domain is l-phenylalanine adenylation; however, we revealed that it displayed broad substrate flexibility from mono-substituted tryptophan analogues to even d-tryptophan. To the best of our knowledge, this is the first evidence for an adenylating enzyme-mediated direct amide bond formation via a sequential enzymatic activation of amino acids followed by nucleophilic substitution by general amines. These findings facilitate the design of a promising tool for biocatalytic straightforward amide bond formation with less side products.


Applied Microbiology and Biotechnology | 2016

Development of a multi-enzymatic cascade reaction for the synthesis of trans-3-hydroxy-l-proline from l-arginine

Ryotaro Hara; Saki Kitatsuji; Kai Yamagata; Kuniki Kino

Naturally occurring l-hydroxyproline in its four regio- and stereoisomeric forms has been explored as a possible precursor for pharmaceutical agents, yet the selective synthesis of trans-3-hydroxy-l-proline has not been achieved. Our aim was to develop a novel biocatalytic asymmetric method for the synthesis of trans-3-hydroxy-l-proline. So far, we focused on the rhizobial arginine catabolic pathway: arginase and ornithine cyclodeaminase are involved in l-arginine degradation to l-proline via l-ornithine. We hypothesized that trans-3-hydroxy-l-proline should be synthesized if arginase and ornithine cyclodeaminase act on (2S,3S)-3-hydroxyarginine and (2S,3S)-3-hydroxyornithine, respectively. To test this hypothesis, we cloned the genes of l-arginine 3-hydroxylase, arginase, and ornithine cyclodeaminase and overexpressed them in Escherichia coli, with subsequent enzyme purification. After characterization and optimization of each enzyme, a three-step procedure involving l-arginine 3-hydroxylase, arginase, and ornithine cyclodeaminase (in this order) was performed using l-arginine as a starting substrate. At the second step of the procedure, putative hydroxyornithine was formed quantitatively by arginase from (2S,3S)-3-hydroxyarginine. Nuclear magnetic resonance and chiral high-performance liquid chromatography analyses revealed that the absolute configuration of this compound was (2S,3S)-3-hydroxyornithine. In the last step of the procedure, trans-3-hydroxy-l-proline was synthesized selectively by ornithine cyclodeaminase from (2S,3S)-3-hydroxyornithine. Thus, we successfully developed a novel synthetic route, comprised of three reactions, to convert l-arginine to trans-3-hydroxy-l-proline. The excellent selectivity makes this procedure simpler and more efficient than conventional chemical synthesis.

Collaboration


Dive into the Ryotaro Hara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryoma Miyake

Mitsubishi Chemical Corporation

View shared research outputs
Top Co-Authors

Avatar

Daisuke Koma

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeaki Harayama

National Institute of Technology and Evaluation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge