Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryotaro Koike is active.

Publication


Featured researches published by Ryotaro Koike.


Nucleic Acids Research | 2012

IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature

Satoshi Fukuchi; Shigetaka Sakamoto; Yukiko Nobe; Seiko D. Murakami; Takayuki Amemiya; Kazuo Hosoda; Ryotaro Koike; Hidekazu Hiroaki; Motonori Ota

IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature (http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/), is a collection of knowledge on experimentally verified intrinsically disordered proteins. IDEAL contains manual annotations by curators on intrinsically disordered regions, interaction regions to other molecules, post-translational modification sites, references and structural domain assignments. In particular, IDEAL explicitly describes protean segments that can be transformed from a disordered state to an ordered state. Since in most cases they can act as molecular recognition elements upon binding of partner proteins, IDEAL provides a data resource for functional regions of intrinsically disordered proteins. The information in IDEAL is provided on a user-friendly graphical view and in a computer-friendly XML format.


PLOS Biology | 2010

Two Distinct Mechanisms for Actin Capping Protein Regulation—Steric and Allosteric Inhibition

Shuichi Takeda; Shiho Minakata; Ryotaro Koike; Ichiro Kawahata; Akihiro Narita; Masashi Kitazawa; Motonori Ota; Tohru Yamakuni; Yuichiro Maéda; Yasushi Nitanai

A crystallographic study reveals the structural basis for regulation by two different inhibitors of the actin capping protein, a critical factor controlling actin-driven cell motility.


Nucleic Acids Research | 2014

IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners

Satoshi Fukuchi; Takayuki Amemiya; Shigetaka Sakamoto; Yukiko Nobe; Kazuo Hosoda; Yumiko Kado; Seiko D. Murakami; Ryotaro Koike; Hidekazu Hiroaki; Motonori Ota

IDEAL (Intrinsically Disordered proteins with Extensive Annotations and Literature, http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/) is a collection of intrinsically disordered proteins (IDPs) that cannot adopt stable globular structures under physiological conditions. Since its previous publication in 2012, the number of entries in IDEAL has almost tripled (120 to 340). In addition to the increase in quantity, the quality of IDEAL has been significantly improved. The new IDEAL incorporates the interactions of IDPs and their binding partners more explicitly, and illustrates the protein–protein interaction (PPI) networks and the structures of protein complexes. Redundant experimental data are arranged based on the clustering of Protein Data Bank entries, and similar sequences with the same binding mode are grouped. As a result, the new IDEAL presents more concise and informative experimental data. Nuclear magnetic resonance (NMR) disorder is annotated in a systematic manner, by identifying the regions with large deviations among the NMR models. The ordered/disordered and new domain predictions by DICHOT are available, as well as the domain assignments by HMMER. Some examples of the PPI networks and the highly deviated regions derived from NMR models will be described, together with other advances. These enhancements will facilitate deeper understanding of IDPs, in terms of their flexibility, plasticity and promiscuity.


Nucleic Acids Research | 2012

PSCDB: a database for protein structural change upon ligand binding

Takayuki Amemiya; Ryotaro Koike; Akinori Kidera; Motonori Ota

Proteins are flexible molecules that undergo structural changes to function. The Protein Data Bank contains multiple entries for identical proteins determined under different conditions, e.g. with and without a ligand molecule, which provides important information for understanding the structural changes related to protein functions. We gathered 839 protein structural pairs of ligand-free and ligand-bound states from monomeric or homo-dimeric proteins, and constructed the Protein Structural Change DataBase (PSCDB). In the database, we focused on whether the motions were coupled with ligand binding. As a result, the protein structural changes were classified into seven classes, i.e. coupled domain motion (59 structural changes), independent domain motion (70), coupled local motion (125), independent local motion (135), burying ligand motion (104), no significant motion (311) and other type motion (35). PSCDB provides lists of each class. On each entry page, users can view detailed information about the motion, accompanied by a morphing animation of the structural changes. PSCDB is available at http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/.


Journal of Molecular Biology | 2011

Classification and Annotation of the Relationship between Protein Structural Change and Ligand Binding

Takayuki Amemiya; Ryotaro Koike; Sotaro Fuchigami; Mitsunori Ikeguchi; Akinori Kidera

The causal relationship between protein structural change and ligand binding was classified and annotated for 839 nonredundant pairs of crystal structures in the Protein Data Bank-one with and the other without a bound low-molecular-weight ligand molecule. Protein structural changes were first classified into either domain or local motions depending on the size of the moving protein segments. Whether the protein motion was coupled with ligand binding was then evaluated based on the location of the ligand binding site and by application of the linear response theory of protein structural change. Protein motions coupled with ligand binding were further classified into either closure or opening motions. This classification revealed the following: (i) domain motions coupled with ligand binding are dominated by closure motions, which can be described by the linear response theory; (ii) local motions frequently accompany order-disorder or α-helix-coil conformational transitions; and (iii) transferase activity (Enzyme Commission number 2) is the predominant function among coupled domain closure motions. This could be explained by the closure motion acting to insulate the reaction site of these enzymes from environmental water.


Journal of Molecular Biology | 2008

Protein Structural Change upon Ligand Binding Correlates with Enzymatic Reaction Mechanism

Ryotaro Koike; Takayuki Amemiya; Motonori Ota; Akinori Kidera

Overall structural changes of enzymes in response to ligand binding were investigated by database analysis of 62 non-redundant enzymes whose ligand-unbound and ligand-bound forms were available in the Protein Data Bank. The results of analysis indicate that transferases often undergo large rigid-body domain motions upon ligand binding, while other enzymes, most typically, hydrolases, change their structures to a small extent. It was also found that the solvent accessibility of the substrate molecule was low in transferases but high in hydrolases. These differences are explained by the enzymatic reaction mechanisms. The transferase reaction requires the catalytic groups to be insulated from the water environment, and thus transferases bury the ligand molecule inside the protein by closing the cleft. On the other hand, the hydrolase reaction involves the surrounding water molecules and occurs at the protein surface, requiring only a small structural change.


Journal of Structural Biology | 2013

An assignment of intrinsically disordered regions of proteins based on NMR structures.

Motonori Ota; Ryotaro Koike; Takayuki Amemiya; Takeshi Tenno; Pedro Romero; Hidekazu Hiroaki; A. Keith Dunker; Satoshi Fukuchi

Intrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as missing residues in protein structures determined by X-ray crystallography, no protocol has been developed to identify IDRs from structures obtained by Nuclear Magnetic Resonance (NMR). Here, we propose a computational method to assign IDRs based on NMR structures. We compared missing residues of X-ray structures with residue-wise deviations of NMR structures for identical proteins, and derived a threshold deviation that gives the best correlation of ordered and disordered regions of both structures. The obtained threshold of 3.2Å was applied to proteins whose structures were only determined by NMR, and the resulting IDRs were analyzed and compared to those of X-ray structures with no NMR counterpart in terms of sequence length, IDR fraction, protein function, cellular location, and amino acid composition, all of which suggest distinct characteristics. The structural knowledge of IDPs is still inadequate compared with that of structured proteins. Our method can collect and utilize IDRs from structures determined by NMR, potentially enhancing the understanding of IDPs.


Protein Science | 2009

Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold

Ryotaro Koike; Akinori Kidera; Motonori Ota

Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand‐binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.


PLOS ONE | 2016

Multiple-Localization and Hub Proteins.

Motonori Ota; Hideki Gonja; Ryotaro Koike; Satoshi Fukuchi

Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing.


Proteins | 2011

Cover and spacer insertions: small nonhydrophobic accessories that assist protein oligomerization.

Hafumi Nishi; Ryotaro Koike; Motonori Ota

We investigated fragmental sequences that were inserted into proteins during long molecular evolution and relevant to the association of homo‐oligomers. Seventeen insertions in 12 SCOP (structure classification of proteins) families were examined and were classified into large and small insertions. The large insertions are composed of interface‐like residues and effectively increase the interface area. In contrast, small insertions are composed of the residues that are not commonly found at the interfaces and have a small interface area: their roles in the oligomerization process are unclear. We found that the small insertions were located in the middle of protein sequences and therefore must involve residues with strong turn and less interface‐like propensities. From a structural viewpoint, small insertions were found to mask hydrophobic patches or act as spacers to fill cavities present at interfaces. The presence or absence of small insertions coincides with the annotated oligomeric states for homologs in the SwissProt database, and the calculation of the association scores predicts that small insertions contribute to the stability of oligomers. These results support the significant role of small, nonhydrophobic insertions in protein oligomerization. Proteins 2011;

Collaboration


Dive into the Ryotaro Koike's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Fukuchi

Maebashi Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge