Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satoshi Fukuchi is active.

Publication


Featured researches published by Satoshi Fukuchi.


Molecular Genetics and Genomics | 1998

Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae.

Kenji Hamada; Satoshi Fukuchi; Mikio Arisawa; M. Baba; Kunio Kitada

Abstract Open reading frames in the genome of Saccharomyces cerevisiae were screened for potential glycosylphosphatidylinositol (GPI)-attached proteins. The identification of putative GPI-attached proteins was based on three criteria: the presence of a GPI-attachment signal sequence, a signal sequence for secretion and a serine- or threonine-rich sequence. In all, 53 ORFs met these three criteria and 38 were further analyzed as follows. The sequence encoding the 40 C-terminal amino acids of each was fused with the structural gene for a reporter protein consisting of a secretion signal, α-galactosidase and a hemagglutinin (HA) epitope, and examined for the ability to become incorporated into the cell wall. On this basis, 14 of fusion proteins were classified as GPI-dependent cell wall proteins because cells expressing these fusion proteins: (i) had high levels of α-galactosidase activity on their surface; (ii) released significant amounts of the fusion proteins from the membrane on treatment with phosphatidylinositol-specific phospholipase C (PI-PLC); and (iii) released fusion proteins from the cell wall following treatment with laminarinase. Of the 14 identified putative GPI-dependent cell wall proteins, 12 had novel ORFs adjacent to their GPI-attachment signal sequence. Amino acid sequence alignment of the C-terminal sequences of the 12 ORFs, together with those of known cell wall proteins, reveals some sequence similarities among them.


Nucleic Acids Research | 2012

IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature

Satoshi Fukuchi; Shigetaka Sakamoto; Yukiko Nobe; Seiko D. Murakami; Takayuki Amemiya; Kazuo Hosoda; Ryotaro Koike; Hidekazu Hiroaki; Motonori Ota

IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature (http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/), is a collection of knowledge on experimentally verified intrinsically disordered proteins. IDEAL contains manual annotations by curators on intrinsically disordered regions, interaction regions to other molecules, post-translational modification sites, references and structural domain assignments. In particular, IDEAL explicitly describes protean segments that can be transformed from a disordered state to an ordered state. Since in most cases they can act as molecular recognition elements upon binding of partner proteins, IDEAL provides a data resource for functional regions of intrinsically disordered proteins. The information in IDEAL is provided on a user-friendly graphical view and in a computer-friendly XML format.


BMC Structural Biology | 2011

Binary classification of protein molecules into intrinsically disordered and ordered segments

Satoshi Fukuchi; Kazuo Hosoda; Keiichi Homma; Takashi Gojobori; Ken Nishikawa

BackgroundAlthough structural domains in proteins (SDs) are important, half of the regions in the human proteome are currently left with no SD assignments. These unassigned regions consist not only of novel SDs, but also of intrinsically disordered (ID) regions since proteins, especially those in eukaryotes, generally contain a significant fraction of ID regions. As ID regions can be inferred from amino acid sequences, a method that combines SD and ID region assignments can determine the fractions of SDs and ID regions in any proteome.ResultsIn contrast to other available ID prediction programs that merely identify likely ID regions, the DICHOT system we previously developed classifies the entire protein sequence into SDs and ID regions. Application of DICHOT to the human proteome revealed that residue-wise ID regions constitute 35%, SDs with similarity to PDB structures comprise 52%, while SDs with no similarity to PDB structures account for the remaining 13%. The last group consists of novel structural domains, termed cryptic domains, which serve as good targets of structural genomics. The DICHOT method applied to the proteomes of other model organisms indicated that eukaryotes generally have high ID contents, while prokaryotes do not. In human proteins, ID contents differ among subcellular localizations: nuclear proteins had the highest residue-wise ID fraction (47%), while mitochondrial proteins exhibited the lowest (13%). Phosphorylation and O-linked glycosylation sites were found to be located preferentially in ID regions. As O-linked glycans are attached to residues in the extracellular regions of proteins, the modification is likely to protect the ID regions from proteolytic cleavage in the extracellular environment. Alternative splicing events tend to occur more frequently in ID regions. We interpret this as evidence that natural selection is operating at the protein level in alternative splicing.ConclusionsWe classified entire regions of proteins into the two categories, SDs and ID regions and thereby obtained various kinds of complete genome-wide statistics. The results of the present study are important basic information for understanding protein structural architectures and have been made publicly available at http://spock.genes.nig.ac.jp/~genome/DICHOT.


International Journal of Molecular Sciences | 2010

Computational Prediction of O-linked Glycosylation Sites that Preferentially Map on Intrinsically Disordered Regions of Extracellular Proteins

Ikuko Nishikawa; Yukiko Nakajima; Masahiro Ito; Satoshi Fukuchi; Keiichi Homma; Ken Nishikawa

O-glycosylation of mammalian proteins is one of the important posttranslational modifications. We applied a support vector machine (SVM) to predict whether Ser or Thr is glycosylated, in order to elucidate the O-glycosylation mechanism. O-glycosylated sites were often found clustered along the sequence, whereas other sites were located sporadically. Therefore, we developed two types of SVMs for predicting clustered and isolated sites separately. We found that the amino acid composition was effective for predicting the clustered type, whereas the site-specific algorithm was effective for the isolated type. The highest prediction accuracy for the clustered type was 74%, while that for the isolated type was 79%. The existence frequency of amino acids around the O-glycosylation sites was different in the two types: namely, Pro, Val and Ala had high existence probabilities at each specific position relative to a glycosylation site, especially for the isolated type. Independent component analyses for the amino acid sequences around O-glycosylation sites showed the position-specific existences of the identified amino acids as independent components. The O-glycosylation sites were preferentially located within intrinsically disordered regions of extracellular proteins: particularly, more than 90% of the clustered O-GalNAc glycosylation sites were observed in intrinsically disordered regions. This feature could be the key for understanding the non-conservation property of O-glycosylation, and its role in functional diversity and structural stability.


BMC Structural Biology | 2009

Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors

Satoshi Fukuchi; Keiichi Homma; Yoshiaki Minezaki; Takashi Gojobori; Ken Nishikawa

BackgroundIn addition to structural domains, most eukaryotic proteins possess intrinsically disordered (ID) regions. Although ID regions often play important functional roles, their accurate identification is difficult. As human transcription factors (TFs) constitute a typical group of proteins with long ID regions, we regarded them as a model of all proteins and attempted to accurately classify TFs into structural domains and ID regions. Although an extremely high fraction of ID regions besides DNA binding and/or other domains was detected in human TFs in our previous investigation, 20% of the residues were left unassigned. In this report, we exploit the generally higher sequence divergence in ID regions than in structural regions to completely divide proteins into structural domains and ID regions.ResultsThe new dichotomic system first identifies domains of known structures, followed by assignment of structural domains and ID regions with a combination of pre-existing tools and a newly developed program based on sequence divergence, taking un-aligned regions into consideration. The system was found to be highly accurate: its application to a set of proteins with experimentally verified ID regions had an error rate as low as 2%. Application of this system to human TFs (401 proteins) showed that 38% of the residues were in structural domains, while 62% were in ID regions. The preponderance of ID regions makes a sharp contrast to TFs of Escherichia coli (229 proteins), in which only 5% fell in ID regions. The method also revealed that 4.0% and 11.8% of the total length in human and E. coli TFs, respectively, are comprised of structural domains whose structures have not been determined.ConclusionThe present system verifies that sequence divergence including information of unaligned regions is a good indicator of ID regions. The system for the first time estimates the complete fractioning of structured/un-structured regions in human TFs, also revealing structural domains without homology to known structures. These predicted novel structural domains are good targets of structural genomics. When applied to other proteins, the system is expected to uncover more novel structural domains.


Nucleic Acids Research | 2009

The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions

Satoshi Fukuchi; Keiichi Homma; Shigetaka Sakamoto; Hideaki Sugawara; Yoshio Tateno; Takashi Gojobori; Ken Nishikawa

The Genomes TO Protein Structures and Functions (GTOP) database (http://spock.genes.nig.ac.jp/~genome/gtop.html) freely provides an extensive collection of information on protein structures and functions obtained by application of various computational tools to the amino acid sequences of entirely sequenced genomes. GTOP contains annotations of 3D structures, protein families, functions, and other useful data of a protein of interest in user-friendly ways to give a deep insight into the protein structure. From the initial 1999 version, GTOP has been continually updated to reap the fruits of genome projects and augmented to supply novel information, in particular intrinsically disordered regions. As intrinsically disordered regions constitute a considerable fraction of proteins and often play crucial roles especially in eukaryotes, their assignments give important additional clues to the functionality of proteins. Additionally, we have incorporated the following features into GTOP: a platform independent structural viewer, results of HMM searches against SCOP and Pfam, secondary structure predictions, color display of exon boundaries in eukaryotic proteins, assignments of gene ontology terms, search tools, and master files.


Nucleic Acids Research | 2009

DDBJ dealing with mass data produced by the second generation sequencer

Hideaki Sugawara; Kazuho Ikeo; Satoshi Fukuchi; Takashi Gojobori; Yoshio Tateno

DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) collected and released 2 368 110 entries or 1 415 106 598 bases in the period from July 2007 to June 2008. The releases in this period include genome scale data of Bombyx mori, Oryzas latipes, Drosophila and Lotus japonicus. In addition, from this year we collected and released trace archive data in collaboration with National Center for Biotechnology Information (NCBI). The first release contains those of O. latipes and bacterial meta genomes in human gut. To cope with the current progress of sequencing technology, we also accepted and released more than 100 million of short reads of parasitic protozoa and their hosts that were produced by using a Solexa sequencer.


Nucleic Acids Research | 2014

IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners

Satoshi Fukuchi; Takayuki Amemiya; Shigetaka Sakamoto; Yukiko Nobe; Kazuo Hosoda; Yumiko Kado; Seiko D. Murakami; Ryotaro Koike; Hidekazu Hiroaki; Motonori Ota

IDEAL (Intrinsically Disordered proteins with Extensive Annotations and Literature, http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/) is a collection of intrinsically disordered proteins (IDPs) that cannot adopt stable globular structures under physiological conditions. Since its previous publication in 2012, the number of entries in IDEAL has almost tripled (120 to 340). In addition to the increase in quantity, the quality of IDEAL has been significantly improved. The new IDEAL incorporates the interactions of IDPs and their binding partners more explicitly, and illustrates the protein–protein interaction (PPI) networks and the structures of protein complexes. Redundant experimental data are arranged based on the clustering of Protein Data Bank entries, and similar sequences with the same binding mode are grouped. As a result, the new IDEAL presents more concise and informative experimental data. Nuclear magnetic resonance (NMR) disorder is annotated in a systematic manner, by identifying the regions with large deviations among the NMR models. The ordered/disordered and new domain predictions by DICHOT are available, as well as the domain assignments by HMMER. Some examples of the PPI networks and the highly deviated regions derived from NMR models will be described, together with other advances. These enhancements will facilitate deeper understanding of IDPs, in terms of their flexibility, plasticity and promiscuity.


Gene | 2002

A systematic investigation identifies a significant number of probable pseudogenes in the Escherichia coli genome.

Keiichi Homma; Satoshi Fukuchi; T. Kawabata; Motonori Ota; Ken Nishikawa

Pseudogenes are open reading frames (ORFs) encoding dysfunctional proteins with high homology to known protein-coding genes. Although pseudogenes were reported to exist in the genomes of many eukaryotes and bacteria, no systematic search for pseudogenes in the Escherichia coli genome has been carried out. Genome comparisons of E. coli strains K-12 and O157 revealed that many protein-coding sequences have prematurely terminated orthologs encoding unstable proteins. To systematically screen for pseudogenes, we selected ORFs generated by premature termination of the orthologous protein-coding genes and subsequently excluded those possibly arising from sequence errors. Lastly we eliminated those with close homologs in this and other species, as these shortened ORFs may actually have functions. The process produced 95 and 101 pseudogene candidates in K-12 and O157, respectively. The assigned three-dimensional structures suggest that most of the encoded proteins cannot fold properly and thus are dysfunctional, indicating that they are probably pseudogenes. Therefore, the existence of a significant number of probable pseudogenes in E. coli is predicted, awaiting experimental verification. Most of them were found to be genes with paralogs or horizontally transferred genes or both. We suggest that pseudogenes constitute a small fraction of the genomes of free-living bacteria in general, reflecting the faster elimination than production of pseudogenes.


PLOS Genetics | 2011

A Novel RNA-Recognition-Motif Protein Is Required for Premeiotic G1/S-Phase Transition in Rice (Oryza sativa L.)

Ken-Ichi Nonomura; Mitsugu Eiguchi; Mutsuko Nakano; Kazuya Takashima; Norio Komeda; Satoshi Fukuchi; Saori Miyazaki; Akio Miyao; Hirohiko Hirochika; Nori Kurata

The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM) proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1), though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

Collaboration


Dive into the Satoshi Fukuchi's collaboration.

Top Co-Authors

Avatar

Ken Nishikawa

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiichi Homma

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigetaka Sakamoto

Maebashi Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Gojobori

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukiko Nobe

Maebashi Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge