Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryuichi Nishinakamura is active.

Publication


Featured researches published by Ryuichi Nishinakamura.


Immunity | 1995

Mice deficient for the IL-3/GM-CSF/IL-5 βc receptor exhibit lung pathology and impaired immune response, while βIL3 receptor-deficient mice are normal

Ryuichi Nishinakamura; Naoki Nakayama; Yoko Hirabayashi; Tohru Inoue; Dee Aud; Tom McNeil; Sadahiro Azuma; Shosei Yoshida; Yutaka Toyoda; Ken ichi Aral; Atsushi Miyajima; Richard Murray

The receptors for IL-3, GM-CSF, and IL-5 share a common beta subunit (beta c), and mice have an additional IL-3 beta subunit (beta IL3). We have independently generated mice carrying null mutations of each molecule. beta c mutant bone marrow showed no response to GM-CSF or IL-5, whereas IL-3 stimulation of beta c or beta IL3 mutant bone marrow was normal. beta c mutant mice showed lung pathology consisting of lymphocytic infiltration and areas resembling alveolar proteinosis, and also exhibited low basal numbers of eosinophils. Infection of beta c mutant mice by Nippostrongylus brasiliensis resulted in the absence of blood and lung eosinophilia. Animals repopulated with beta c mutant bone marrow cells showed slower leukocyte recovery and reduced eosinophil numbers. These data define the role of beta c in vivo, and show a phenotype that is likely to be the cumulative effect of loss of GM-CSF and IL-5 stimulation.


Cell Stem Cell | 2014

Redefining the In Vivo Origin of Metanephric Nephron Progenitors Enables Generation of Complex Kidney Structures from Pluripotent Stem Cells

Atsuhiro Taguchi; Yusuke Kaku; Tomoko Ohmori; Sazia Sharmin; Minetaro Ogawa; Hiroshi Sasaki; Ryuichi Nishinakamura

Recapitulating three-dimensional (3D) structures of complex organs, such as the kidney, from pluripotent stem cells (PSCs) is a major challenge. Here, we define the developmental origins of the metanephric mesenchyme (MM), which generates most kidney components. Unexpectedly, we find that posteriorly located T(+) MM precursors are developmentally distinct from Osr1(+) ureteric bud progenitors during the postgastrulation stage, and we identify phasic Wnt stimulation and stage-specific growth factor addition as molecular cues that promote their development into the MM. We then use this information to derive MM from PSCs. These progenitors reconstitute the 3D structures of the kidney in vitro, including glomeruli with podocytes and renal tubules with proximal and distal regions and clear lumina. Furthermore, the glomeruli are efficiently vascularized upon transplantation. Thus, by reevaluating the developmental origins of metanephric progenitors, we have provided key insights into kidney specification in vivo and taken important steps toward kidney organogenesis in vitro.


Development | 2006

The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development

Masayo Sakaki-Yumoto; Chiyoko Kobayashi; Akira Sato; Sayoko Fujimura; Yuko Matsumoto; Minoru Takasato; Tatsuhiko Kodama; Hiroyuki Aburatani; Makoto Asashima; Nobuaki Yoshida; Ryuichi Nishinakamura

Mutations in SALL4, the human homolog of the Drosophila homeotic gene spalt (sal), cause the autosomal dominant disorder known as Okihiro syndrome. In this study, we show that a targeted null mutation in the mouse Sall4 gene leads to lethality during peri-implantation. Growth of the inner cell mass from the knockout blastocysts was reduced, and Sall4-null embryonic stem (ES) cells proliferated poorly with no aberrant differentiation. Furthermore, we demonstrated that anorectal and heart anomalies in Okihiro syndrome are caused by Sall4 haploinsufficiency and that Sall4/Sall1 heterozygotes exhibited an increased incidence of anorectal and heart anomalies, exencephaly and kidney agenesis. Sall4 and Sall1 formed heterodimers, and a truncated Sall1 caused mislocalization of Sall4 in the heterochromatin; thus, some symptoms of Townes-Brocks syndrome caused by SALL1 truncations could result from SALL4 inhibition.


Journal of Clinical Investigation | 1997

Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression.

Uta Dirksen; Ryuichi Nishinakamura; Peter Groneck; Uwe Hattenhorst; Lawrence M. Nogee; Richard Murray; Stefan Burdach

Pulmonary alveolar proteinosis (PAP) is a heterogeneous disorder of genetic or acquired etiologies. In some cases congenital PAP is associated with hereditary surfactant protein (SP)-B deficiency. To date, the molecular defect in the majority of patients with PAP has not been identified. In mice, PAP has been generated by targeted deletion of the genes for either the GM-CSF/IL-3/IL-5 receptor common beta chain (beta c) or GM-CSF. Here, we describe an expression defect of beta c in three of seven pediatric patients with PAP and in one patient with severe lung disease suspected to be PAP. The patients failed to express normal levels of beta c as shown by flow cytometry. Strikingly reduced or absent function of beta c was demonstrated by ligand binding studies and progenitor clonogenic assays. Analysis of beta c DNA revealed a point mutation from proline to threonine at codon 602 in one patient. Our findings provide evidence that a defect in the expression of a hematopoietic cytokine receptor is associated with human PAP.


Science | 2009

Draxin, a repulsive guidance protein for spinal cord and forebrain commissures.

Shahidul M. Islam; Yohei Shinmyo; Tatsuya Okafuji; Yuhong Su; Iftekhar Bin Naser; Giasuddin Ahmed; Sanbing Zhang; Sandy Chen; Kunimasa Ohta; Hiroshi Kiyonari; Takaya Abe; Satomi S. Tanaka; Ryuichi Nishinakamura; Toshio Terashima; Toshio Kitamura; Hideaki Tanaka

Axon guidance proteins are critical for the correct wiring of the nervous system during development. Several axon guidance cues and their family members have been well characterized. More unidentified axon guidance cues are assumed to participate in the formation of the extremely complex nervous system. We identified a secreted protein, draxin, that shares no homology with known guidance cues. Draxin inhibited or repelled neurite outgrowth from dorsal spinal cord and cortical explants in vitro. Ectopically expressed draxin inhibited growth or caused misrouting of chick spinal cord commissural axons in vivo. draxin knockout mice showed defasciculation of spinal cord commissural axons and absence of all forebrain commissures. Thus, draxin is a previously unknown chemorepulsive axon guidance molecule required for the development of spinal cord and forebrain commissures.


Cell Stem Cell | 2012

Functional antagonism between Sall4 and Plzf defines germline progenitors.

Robin M. Hobbs; Sharmila Fagoonee; Antonella Papa; Kaitlyn A. Webster; Fiorella Altruda; Ryuichi Nishinakamura; Li Chai; Pier Paolo Pandolfi

Transcription factors required for formation of embryonic tissues often maintain their expression in adult stem cell populations, but whether their function remains equivalent is not clear. Here we demonstrate critical and distinct roles for Sall4 in development of embryonic germ cells and differentiation of postnatal spermatogonial progenitor cells (SPCs). In differentiating SPCs, Sall4 levels transiently increase and Sall4 physically interacts with Plzf, a transcription factor exclusively required for adult stem cell maintenance. Mechanistically, Sall4 sequesters Plzf to noncognate chromatin domains to induce expression of Kit, a target of Plzf-mediated repression required for differentiation. Plzf in turn antagonizes Sall4 function by displacing Sall4 from cognate chromatin to induce Sall1 expression. Taken together, these data suggest that transcription factors required for embryonic tissue development postnatally take on distinct roles through interaction with opposing factors, which hence define properties of the adult stem cell compartment.


American Journal of Pathology | 2012

Generation of kidney from pluripotent stem cells via blastocyst complementation.

Jo Ichi Usui; Toshihiro Kobayashi; Tomoyuki Yamaguchi; A.S. Knisely; Ryuichi Nishinakamura; Hiromitsu Nakauchi

Because a shortage of donor organs has been a major obstacle to the expansion of organ transplantation programs, the generation of transplantable organs is among the ultimate goals of regenerative medicine. However, the complex cellular interactions among and within tissues that are required for organogenesis are difficult to recapitulate in vitro. As an alternative, we used blastocyst complementation to generate pluripotent stem cell (PSC)-derived donor organs in vivo. We hypothesized that if we injected PSCs into blastocysts obtained from mutant mice in which the development of a certain organ was precluded by genetic manipulation, thereby leaving a niche for organ development, the PSC-derived cells would developmentally compensate for the defect and form the missing organ. In our previous work, we showed proof-of-principle findings of pancreas generation by injection of PSCs into pancreas-deficient Pdx1(-/-) mouse blastocysts. In this study, we have extended this technique to kidney generation using Sall1(-/-) mouse blastocysts. As a result, the defective cells were totally replaced, and the kidneys were entirely formed by the injected mouse PSC-derived cells, except for structures not under the influence of Sall1 expression (ie, collecting ducts and microvasculature). These findings indicate that blastocyst complementation can be extended to generate PSC-derived kidneys. This system may therefore provide novel insights into renal organogenesis.


Development Growth & Differentiation | 2002

In vitro induction of the pronephric duct in Xenopus explants

Kenji Osafune; Ryuichi Nishinakamura; Shinji Komazaki; Makoto Asashima

The earliest form of embryonic kidney, the pronephros, consists of three components: glomus, tubule and duct. Treatment of the undifferentiated animal pole ectoderm of Xenopus laevis with activin A and retinoic acid (RA) induces formation of the pronephric tubule and glomus. In this study, the rate of induction of the pronephric duct, the third component of the pronephros, was investigated in animal caps treated with activin A and RA. Immunohistochemistry using pronephric duct‐specific antibody 4A6 revealed that a high proportion of the treated explants contained 4A6‐positive tubular structures. Electron microscopy showed that the tubules in the explants were similar to the pronephric ducts of normal larvae, and they also expressed Gremlin and c‐ret, molecular markers for pronephric ducts. These results suggest that the treatment of Xenopus ectoderm with activin A and RA induces a high rate of differentiation of pronephric ducts, in addition to the differentiation of the pronephric tubule and glomus, and that this in vitro system can serve as a simple and effective model for analysis of the mechanism of pronephros differentiation.


Gastroenterology | 2009

Sall4 Regulates Cell Fate Decision in Fetal Hepatic Stem/Progenitor Cells

Tsunekazu Oikawa; Akihide Kamiya; Sei Kakinuma; Mikio Zeniya; Ryuichi Nishinakamura; Hisao Tajiri; Hiromitsu Nakauchi

BACKGROUND & AIMS Fetal hepatic stem/progenitor cells, called hepatoblasts, differentiate into both hepatocytes and cholangiocytes. The molecular mechanisms regulating this lineage segmentation process remain unknown. Sall4 has been shown to be among the regulators of organogenesis, embryogenesis, maintenance of pluripotency, and early embryonic cell fate decisions in embryonic stem cells. The expression and functional roles of Sall4 during liver development have not been elucidated. We here provide their first description in hepatoblasts. METHODS To investigate functions of Sall4 in fetal liver development, Dlk(+)CD45(-)Ter119(-) hepatoblasts derived from embryonic day 14 mouse livers were purified, and in vitro gain and loss of function analyses and in vivo transplantation analyses were performed using retrovirus- or lentivirus-mediated gene transfer. RESULTS We demonstrated that Sall4 was expressed in fetal hepatoblasts but not adult hepatocytes. The expression level of Sall4 gradually fell during liver development. Overexpression of Sall4 in hepatoblasts significantly inhibited maturation induced by oncostatin M and extracellular matrix in vitro, as evidenced by morphologic changes and suppression of hepatic maturation marker gene expression. When bile duct-like structures were induced by collagen gel-embedded culture, overexpression of Sall4 markedly augmented size and number of cytokeratin19(+)-branching structures. Knockdown of Sall4 inhibited formation of these branching structures. With in vivo transplantation, Sall4 enhanced differentiation of cytokeratin19(+)-bile ducts derived from transplanted hepatoblasts. CONCLUSIONS These results suggest that Sall4 plays a crucial role in controlling the lineage commitment of hepatoblasts not only inhibiting their differentiation into hepatocytes but also driving their differentiation toward cholangiocytes.


Stem Cells | 2009

Sall4 Is Essential for Stabilization, But Not for Pluripotency, of Embryonic Stem Cells by Repressing Aberrant Trophectoderm Gene Expression

Shunsuke Yuri; Sayoko Fujimura; Keisuke Nimura; Naoki Takeda; Yayoi Toyooka; Yu Ichi Fujimura; Hiroyuki Aburatani; Kiyoe Ura; Haruhiko Koseki; Hitoshi Niwa; Ryuichi Nishinakamura

Sall4 is a mouse homolog of a causative gene of the autosomal dominant disorder Okihiro syndrome. We previously showed that the absence of Sall4 leads to lethality during peri‐implantation and that Sall4‐null embryonic stem (ES) cells proliferate poorly with intact pluripotency when cultured on feeder cells. Here, we report that, in the absence of feeder cells, Sall4‐null ES cells express the trophectoderm marker Cdx2, but are maintained for a long period in an undifferentiated state with minimally affected Oct3/4 expression. Feeder‐free Sall4‐null ES cells contribute solely to the inner cell mass and epiblast in vivo, indicating that these cells still retain pluripotency and do not fully commit to the trophectoderm. These phenotypes could arise from derepression of the Cdx2 promoter, which is normally suppressed by Sall4 and the Mi2/NuRD HDAC complex. However, proliferation was impaired and G1 phase prolonged in the absence of Sall4, suggesting another role for Sall4 in cell cycle control. Although Sall1, also a Sall family gene, is known to genetically interact with Sall4 in vivo, Sall1‐null ES cells have no apparent defects and no exacerbation is observed in ES cells lacking both Sall1 and Sall4, compared with Sall4‐null cells. This suggests a unique role for Sall4 in ES cells. Thus, though Sall4 does not contribute to the central machinery of the pluripotency, it stabilizes ES cells by repressing aberrant trophectoderm gene expression. STEM CELLS 2009;27:796–805

Collaboration


Dive into the Ryuichi Nishinakamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Asashima

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge