Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryusei Kuwata is active.

Publication


Featured researches published by Ryusei Kuwata.


Virus Research | 2011

Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in Japan.

Haruhiko Isawa; Ryusei Kuwata; Keita Hoshino; Yoshio Tsuda; Kouji Sakai; Shumpei Watanabe; Miho Nishimura; Tomomitsu Satho; Michiyo Kataoka; Noriyo Nagata; Hideki Hasegawa; Hisanori Bando; Kazuhiko Yano; Toshinori Sasaki; Mutsuo Kobayashi; Tetsuya Mizutani; Kyoko Sawabe

Two infectious agents were isolated from Culex species mosquitoes in Japan and were identified as distinct strains of a new RNA virus by a method for sequence-independent amplification of viral nucleic acids. The virus designated Omono River virus (OMRV) replicated in mosquito cells in which it produced a severe cytopathic effect. Icosahedral virus particles of approximately 40 nm in diameter were detected in the cytoplasm of infected cells. The OMRV genome was observed to consist of a nonsegmented, 7.6-kb double-stranded RNA (dsRNA) and contain two overlapping open reading frames (ORFs), namely ORF1 and ORF2. ORF1 was found to encode a putative dsRNA-binding protein, a major capsid protein, and other putative proteins, which might be generated by co- and/or post-translational processing of the ORF1 polyprotein precursor, and ORF2 was found to encode a putative RNA-dependent RNA polymerase (RdRp), which could be translated as a fusion with the ORF1 product by a -1 ribosomal frameshift. Phylogenetic analysis based on RdRp revealed that OMRV is closely related to penaeid shrimp infectious myonecrosis virus and Drosophila totivirus, which are tentatively assigned to the family Totiviridae. These results indicated that OMRV is a new member of the family of nonsegmented dsRNA viruses infecting arthropod hosts, but not fungal or protozoan hosts.


PLOS ONE | 2014

Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses.

Yutaka Terada; Nobutaka Matsui; Keita Noguchi; Ryusei Kuwata; Hiroshi Shimoda; Takehisa Soma; Masami Mochizuki; Ken Maeda

Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently.


Journal of Virology | 2011

RNA Splicing in a New Rhabdovirus from Culex Mosquitoes

Ryusei Kuwata; Haruhiko Isawa; Keita Hoshino; Yoshio Tsuda; Tohru Yanase; Toshinori Sasaki; Mutsuo Kobayashi; Kyoko Sawabe

ABSTRACT Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the hosts nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.


Archives of Virology | 2013

Characterization of Dak Nong virus, an insect nidovirus isolated from Culex mosquitoes in Vietnam.

Ryusei Kuwata; Tomomitsu Satho; Haruhiko Isawa; Nguyen Thi Yen; Tran Vu Phong; Phan Thi Nga; Tomokazu Kurashige; Yukihiro Hiramatsu; Yuki Fukumitsu; Keita Hoshino; Toshinori Sasaki; Mutsuo Kobayashi; Tetsuya Mizutani; Kyoko Sawabe

In this study, we isolated and characterized an insect nidovirus from the mosquito Culex tritaeniorhynchus Giles (Diptera: Culicidae) in Vietnam, as an additional member of the new family Mesoniviridae in the order Nidovirales. The virus, designated “Dak Nong virus (DKNV),” shared many characteristics with Cavally virus and Nam Dinh virus, which have also been discovered recently in mosquitoes, and these viruses should be considered members of a single virus species, Alphamesonivirus 1. DKNV grew in cultured mosquito cells but could not replicate in the cultured vertebrate cells tested. N-terminal sequencing of the DKNV structural proteins revealed two posttranslational cleavage sites in the spike glycoprotein precursor. DKNV is assumed to be a new member of the species Alphamesonivirus 1, and the current study provides further understanding of viruses belonging to the new family Mesoniviridae.


Journal of Medical Entomology | 2015

Analysis of Mosquito-Borne Flavivirus Superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) Cells Persistently Infected with Culex Flavivirus (Flaviviridae)

Ryusei Kuwata; Haruhiko Isawa; Keita Hoshino; Toshinori Sasaki; Mutsuo Kobayashi; Ken Maeda; Kyoko Sawabe

ABSTRACT Superinfection exclusion is generally defined as a phenomenon in which a pre-existing viral infection prevents a secondary viral infection; this has also been observed in infections with mosquito-borne viruses. In this study, we examined the superinfection exclusion of the vertebrate-infecting flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV), by stable and persistent infection with an insect-specific flavivirus, Culex flavivirus (CxFV), in a Culex tritaeniorhynchus Giles cell line (CTR cells). Our experimental system was designed based on the premise that wild Cx. tritaeniorhynchus mosquitoes naturally infected with CxFV are superinfected with JEV by feeding on JEV-infected animals. As a result, we found no evidence of the superinfection exclusion of both JEV and DENV by pre-existing CxFV infection at the cellular level. However, JEV superinfection induced severe cytopathic effects on persistently CxFV-infected CTR cells. These observations imply the possibility that JEV superinfection in CxFV-infected Cx. tritaeniorhynchus mosquitoes has an adverse effect on their fitness.


American Journal of Tropical Medicine and Hygiene | 2013

Surveillance of Japanese Encephalitis Virus Infection in Mosquitoes in Vietnam from 2006 to 2008

Ryusei Kuwata; Phan Thi Nga; Nguyen Thi Yen; Keita Hoshino; Haruhiko Isawa; Yukiko Higa; Nguyen Vet Hoang; Bui Minh Trang; Do Phuong Loan; Tran Vu Phong; Toshinori Sasaki; Yoshio Tsuda; Mutsuo Kobayashi; Kyoko Sawabe; Masahiro Takagi

Japanese encephalitis virus (JEV) infection in mosquitoes was monitored in Vietnam from 2006 to 2008. A total of 15,225 mosquitoes, identified as 26 species in five genera were collected and 12,621 were grouped into 447 pools for examination of JEV infection by assays for cytopathic effects in C6/36 cells and by RT-PCR to detect flavivirus RNA. Three JEV strains were isolated from Culex tritaeniorhynchus Giles collected in northern and southern Vietnam and two JEV strains were isolated from Culex vishnui Theobald collected in the highlands of Vietnam. Genetic and phylogenetic analyses, based on complete E gene nucleotide sequences, revealed that the five JEV strains were classified into the genotype I group and six amino acid differences were found in these five strains. These results indicated that multiple JEV genotype I populations are circulating countrywide in Vietnam, transmitted by bites of their Cx. tritaeniorhynchus and Cx. vishnui.


Microbes and Infection | 2008

Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes.

Ryusei Kuwata; Toyoshi Yoshiga; Mutsuhiro Yoshida; Eizo Kondo

Gram-negative bacteria, Photorhabdus luminescens and P. temperata, form a mutualistic association with entomopathogenic heterorhabditid nematodes while P. asymbiotica is known as an opportunistic human pathogen that causes disseminated bacteremic spread on two continents, the United States and Australia. In the course of our phylogenetic study of Photorhabdus bacteria associated with Japanese Heterorhabditis nematodes, we found two Photorhabdus isolates (Photorhabdus sp. Cbkj163 and OnIr40) whose partial 16S rRNA gene sequence showed high similarities to clinical isolates of this pathogen from Heterorhabditis indica. The phylogenetic study, based upon the gyrase subunit B gene sequences of the two isolates, revealed clustering with these clinical isolates of P. asymbiotica from both the United States and Australia but not with other Photorhabdus bacteria associated with nematodes. The two bacterial isolates were also found to share microbiological and biochemical characteristics with clinical and entomopathogenic Photorhabdus strains. Moreover, not only the two novel Photorhabdus isolates but also an Australian clinical isolate of P. asymbiotica formed mutualistic association with H. indica isolates. These data suggest that the bacteria isolated from H. indica CbKj163 and OnIr40 are a novel subspecies of P. asymbiotica, and that some clinical isolates of P. asymbiotica could have originated from bacteria associated with entomopathogenic nematodes.


Archives of Virology | 2012

Construction of an infectious cDNA clone of Culex flavivirus, an insect-specific flavivirus from Culex mosquitoes

Haruhiko Isawa; Ryusei Kuwata; Shigeru Tajima; Keita Hoshino; Toshinori Sasaki; Tomohiko Takasaki; Mutsuo Kobayashi; Kyoko Sawabe

Culex flavivirus (CxFV) is an insect-specific flavivirus that has recently been detected in various Culex spp. mosquitoes worldwide. Here, we report the successful construction of a full-length infectious cDNA clone of a Tokyo strain, CxFV-NIID21. The full-length CxFV-NIID21 cDNA was cloned into the low-copy-number plasmid pMW119, which was stably amplified in Escherichia coli. Transfection of a mosquito cell line with in vitro-transcribed RNA from the cDNA clone resulted in the production of recombinant progeny virus with growth properties, cytopathogenicity, and virion morphology similar to the parental virus.


Archives of Virology | 2015

Genetic and biological characterization of Muko virus, a new distinct member of the species Great Island virus (genus Orbivirus, family Reoviridae), isolated from ixodid ticks in Japan

Hiroko Ejiri; Chang-Kweng Lim; Haruhiko Isawa; Ryusei Kuwata; Daisuke Kobayashi; Yukie Yamaguchi; Mutsuyo Takayama-Ito; Hitomi Kinoshita; Satsuki Kakiuchi; Madoka Horiya; Akira Kotaki; Tomohiko Takasaki; Ken Maeda; Toshihiko Hayashi; Toshinori Sasaki; Mutsuo Kobayashi; Masayuki Saijo; Kyoko Sawabe

Among the tick-borne orbiviruses (genus Orbivirus, family Reoviridae), 36 serotypes are currently classified within a single virus species, Great Island virus. In this study, we report the first characterization of a tick-borne orbivirus isolated from the tick Ixodes turdus in Japan, which we identified as a new member of the species Great Island virus. The virus isolate, designated Muko virus (MUV), replicated and induced cytopathic effects in BHK-21, Vero E6, and CCL-141 cells and caused high mortality in suckling mice after intracerebral inoculation. Full genome sequence analysis showed that MUV shared the greatest phylogenetic similarity with Tribeč virus in terms of the amino acid sequences of all viral proteins except for outer capsid protein 1 (OC1; VP4 of MUV). Analysis of genome segment 9 in MUV detected an uninterrupted open reading frame that overlaps with VP6 (Hel), which putatively encodes a molecular and functional equivalent of NS4 from Great Island virus. Our study provides new insights into the geographic distribution, genetic diversity, and evolutionary history of the members of the species Great Island virus.


PLOS ONE | 2017

Epidemiological study of relapsing fever borreliae detected in Haemaphysalis ticks and wild animals in the western part of Japan

Kiwa Furuno; Kyunglee Lee; Yukie Itoh; Kazuo Suzuki; Kenzo Yonemitsu; Ryusei Kuwata; Hiroshi Shimoda; Masahisa Watarai; Ken Maeda; Ai Takano; Brian Stevenson

The genus Borrelia comprises arthropod-borne bacteria, which are infectious agents in vertebrates. They are mainly transmitted by ixodid or argasid ticks. In Hokkaido, Japan, Borrelia spp. were found in deer and Haemaphysalis ticks between 2011 and 2013; however, the study was limited to a particular area. Therefore, in the present study, we conducted large-scale surveillance of ticks and wild animals in the western part of the main island of Japan. We collected 6,407 host-seeking ticks from two regions and 1,598 larvae obtained from 32 engorged female ticks and examined them to elucidate transovarial transmission. In addition, we examined whole blood samples from 190 wild boars and 276 sika deer, as well as sera from 120 wild raccoons. We detected Borrelia spp. in Haemaphysalis flava, Haemaphysalis megaspinosa, Haemaphysalis kitaokai, Haemaphysalis longicornis, and Haemaphysalis formosensis. In addition, we isolated a strain from H. megaspinosa using Barbour-Stoenner-Kelly medium. The minimum infection rate of ticks was less than 5%. Transovarial transmission was observed in H. kitaokai. Phylogenetic analysis of the isolated strain and DNA fragments amplified from ticks identified at least four bacterial genotypes, which corresponded to the tick species detected. Bacteria were detected in 8.4%, 15%, and 0.8% of wild boars, sika deer, and raccoons, respectively. In this study, we found seasonal differences in the prevalence of bacterial genotypes in sika deer during the winter and summer. The tick activity season corresponds to the season with a high prevalence of animals. The present study suggests that a particular bacterial genotype detected in this study are defined by a particular tick species in which they are present.

Collaboration


Dive into the Ryusei Kuwata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haruhiko Isawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyoko Sawabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mutsuo Kobayashi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Toshinori Sasaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keita Hoshino

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuya Mizutani

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge