Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Bradley Cenko is active.

Publication


Featured researches published by S. Bradley Cenko.


Publications of the Astronomical Society of the Pacific | 2009

The Palomar Transient Factory: System Overview, Performance, and First Results

Nicholas M. Law; S. R. Kulkarni; Richard G. Dekany; Eran O. Ofek; Robert Michael Quimby; Peter E. Nugent; Jason A. Surace; Carl C. Grillmair; Joshua S. Bloom; Mansi M. Kasliwal; Lars Bildsten; Timothy M. Brown; S. Bradley Cenko; David R. Ciardi; Ernest Croner; S. George Djorgovski; Julian Christopher van Eyken; Alexei V. Filippenko; Derek B. Fox; Avishay Gal-Yam; David Hale; Nouhad Hamam; George Helou; John R. Henning; D. Andrew Howell; J. Jacobsen; Russ R. Laher; Sean Mattingly; Dan McKenna; Andrew J. Pickles

The Palomar Transient Factory (PTF) is a fully-automated, wide-field survey aimed at a systematic exploration of the optical transient sky. The transient survey is performed using a new 8.1 square degree camera installed on the 48 inch Samuel Oschin telescope at Palomar Observatory; colors and light curves for detected transients are obtained with the automated Palomar 60 inch telescope. PTF uses 80% of the 1.2 m and 50% of the 1.5 m telescope time. With an exposure of 60 s the survey reaches a depth of m_(g′) ≈ 21.3 and m_R ≈ 20.6 (5σ, median seeing). Four major experiments are planned for the five-year project: (1) a 5 day cadence supernova search; (2) a rapid transient search with cadences between 90 s and 1 day; (3) a search for eclipsing binaries and transiting planets in Orion; and (4) a 3π sr deep H-alpha survey. PTF provides automatic, real-time transient classification and follow-up, as well as a database including every source detected in each frame. This paper summarizes the PTF project, including several months of on-sky performance tests of the new survey camera, the observing plans, and the data reduction strategy. We conclude by detailing the first 51 PTF optical transient detections, found in commissioning data.


Publications of the Astronomical Society of the Pacific | 2009

Exploring the Optical Transient Sky with the Palomar Transient Factory

S. R. Kulkarni; Nicholas M. Law; Joshua S. Bloom; David R. Ciardi; George Djorgovski; Derek B. Fox; Avishay Gal-Yam; Carl C. Grillmair; Mansi M. Kasliwal; Peter E. Nugent; Eran O. Ofek; Robert Michael Quimby; William T. Reach; Michael M. Shara; Lars Bildsten; S. Bradley Cenko; Andrew J. Drake; Alexei V. Filippenko; D. J. Helfand; George Helou; D. Andrew Howell; Dovi Poznanski; Mark Sullivan

The Palomar Transient Factory (PTF) is a wide-field experiment designed to investigate the optical transient and variable sky on time scales from minutes to years. PTF uses the CFH12k mosaic camera, with a field of view of 7.9 deg^2 and a plate scale of 1″ pixel^(-1), mounted on the Palomar Observatory 48 inch Samuel Oschin Telescope. The PTF operation strategy is devised to probe the existing gaps in the transient phase space and to search for theoretically predicted, but not yet detected, phenomena, such as fallback supernovae, macronovae, .Ia supernovae, and the orphan afterglows of gamma-ray bursts. PTF will also discover many new members of known source classes, from cataclysmic variables in their various avatars to supernovae and active galactic nuclei, and will provide important insights into understanding galactic dynamics (through RR Lyrae stars) and the solar system (asteroids and near-Earth objects). The lessons that can be learned from PTF will be essential for the preparation of future large synoptic sky surveys like the Large Synoptic Survey Telescope. In this article we present the scientific motivation for PTF and describe in detail the goals and expectations for this experiment.


Science | 2011

A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star

Joshua S. Bloom; Dimitrios Giannios; Brian D. Metzger; S. Bradley Cenko; Daniel A. Perley; Nathaniel R. Butler; Nial R. Tanvir; Andrew J. Levan; P. T. O’Brien; Linda E. Strubbe; Fabio De Colle; Enrico Ramirez-Ruiz; William H. Lee; Sergei Nayakshin; Eliot Quataert; A. R. King; Antonino Cucchiara; James Guillochon; Geoffrey C. Bower; Andrew S. Fruchter; Adam N. Morgan; Alexander Jonathan Van Der Horst

A recent bright emission observed by the Swift satellite is due to the sudden accretion of a star onto a massive black hole. Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 106 to 107 solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.


Nature | 2011

Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star

Peter E. Nugent; Mark Sullivan; S. Bradley Cenko; R. C. Thomas; Daniel Kasen; D. Andrew Howell; D. F. Bersier; Joshua S. Bloom; S. R. Kulkarni; M. T. Kandrashoff; Alexei V. Filippenko; Jeffrey M. Silverman; Geoffrey W. Marcy; Andrew W. Howard; Howard Isaacson; K. Maguire; Nao Suzuki; James E. Tarlton; Yen Chen Pan; Lars Bildsten; Benjamin J. Fulton; Jerod T. Parrent; David J. Sand; Philipp Podsiadlowski; Federica B. Bianco; Benjamin E. P. Dilday; Melissa Lynn Graham; J. D. Lyman; P. A. James; Mansi M. Kasliwal

Type Ia supernovae have been used empirically as ‘standard candles’ to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon–oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.


Nature | 2011

Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe

Weidong Li; Joshua S. Bloom; Philipp Podsiadlowski; Adam A. Miller; S. Bradley Cenko; Saurabh W. Jha; Mark Sullivan; D. Andrew Howell; Peter E. Nugent; Nathaniel R. Butler; Eran O. Ofek; Mansi M. Kasliwal; Joseph W. Richards; Alan N. Stockton; Hsin-Yi Shih; Lars Bildsten; Michael M. Shara; Joanne Bibby; Alexei V. Filippenko; Mohan Ganeshalingam; Jeffrey M. Silverman; S. R. Kulkarni; Nicholas M. Law; Dovi Poznanski; Robert Michael Quimby; Curtis McCully; Brandon Patel; K. Maguire; Ken J. Shen

Weidong Li1, Joshua S. Bloom1, Philipp Podsiadlowski2, Adam A. Miller1, S. Bradley Cenko1, Saurabh W. Jha3, Mark Sullivan2, D. Andrew Howell4,5, Peter E. Nugent6,1, Nathaniel R. Butler7, Eran O. Ofek8,9, Mansi M. Kasliwal10, Joseph W. Richards1,11, Alan Stockton12, Hsin-Yi Shih12, Lars Bildsten5,13, Michael M. Shara14, Joanne Bibby14, Alexei V. Filippenko1, Mohan Ganeshalingam1, Jeffrey M. Silverman1, S. R. Kulkarni8, Nicholas M. Law15, Dovi Poznanski16, Robert M. Quimby8, Curtis McCully3, Brandon Patel3, & Kate Maguire2Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10–100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.


The Astrophysical Journal | 2012

SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE?

S. Bradley Cenko; Hans A. Krimm; Assaf Horesh; Dale A. Frail; J. A. Kennea; Andrew J. Levan; Stephen T. Holland; Nathaniel R. Butler; Robert Michael Quimby; Joshua S. Bloom; Alexei V. Filippenko; Avishay Gal-Yam; J. Greiner; S. R. Kulkarni; Eran O. Ofek; Felipe Olivares E.; Patricia Schady; Jeffrey M. Silverman; Nial R. Tanvir; Dong Xu

We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration ≳ months), luminous X-ray (L_(X, iso) ≈ 3 × 10^(47) erg s^(–1)) and radio (νL_(ν, iso) ≈ 10^(42) erg s^(–1)) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A/Swift J164449.3+573451 (Sw J1644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources (compared with the expected rate of tidal disruptions) implies that either these outflows are extremely narrowly collimated (θ < 1°) or only a small fraction of tidal disruptions generate relativistic ejecta. Analogous to the case of long-duration gamma-ray bursts and core-collapse supernovae, we speculate that rapid spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus (AGN)), Sw J2058+05 would seem to represent a new mode of variability in these sources, as the observed properties appear largely inconsistent with known classes of AGNs capable of generating relativistic jets (blazars, narrow-line Seyfert 1 galaxies).


The Astrophysical Journal | 2009

Luminous Thermal Flares from Quiescent Supermassive Black Holes

S. Gezari; Timothy M. Heckman; S. Bradley Cenko; Michael Eracleous; Karl Forster; Thiago S. Goncalves; D. Chris Martin; Patrick Morrissey; Susan G. Neff; Mark Seibert; David Schiminovich; Ted K. Wyder

A dormant supermassive black hole lurking in the center of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces, and a flare of electromagnetic radiation is emitted when the bound fraction of the stellar debris falls back onto the black hole and is accreted. Although the tidal disruption of a star is a rare event in a galaxy,≈10^(–4) yr^(–1), observational candidates have emerged in all-sky X-ray and deep ultraviolet (UV) surveys in the form of luminous UV/X-ray flares from otherwise quiescent galaxies. Here we present the third candidate tidal disruption event discovered in the Galaxy Evolution Explorer (GALEX) Deep Imaging Survey: a 1.6 × 10^(43) erg s^(–1) UV/optical flare from a star-forming galaxy at z = 0.1855. The UV/optical spectral energy distribution (SED) during the peak of the flare measured by GALEX and Palomar Large Field Camera imaging can be modeled as a single temperature blackbody with T_(bb) = 1.7 × 10^5 K and a bolometric luminosity of 3 × 10^(45) erg s^(–1), assuming an internal extinction with E(B – V)_(gas) = 0.3. The Chandra upper limit on the X-ray luminosity during the peak of the flare, L_X (2 – 10 keV) M_g > – 18.9) to predict the detection capabilities of upcoming optical synoptic surveys.


Monthly Notices of the Royal Astronomical Society | 2013

The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova

Jon C. Mauerhan; Nathan Smith; Alexei V. Filippenko; Kyle Blanchard; Peter K. Blanchard; Chadwick F. E. Casper; S. Bradley Cenko; Kelsey I. Clubb; Daniel P. Cohen; Kiera L. Fuller; Gary Z. Li; Jeffrey M. Silverman

Some reports of supernova (SN) discoveries turn out not to be true core-collapse explosions. One such case was SN 2009ip, which was recognized to be a luminous blue variable (LBV) eruption. This source had a massive (50-80 Msun) hot progenitor star identified in pre-explosion data, it had documented evidence of pre-outburst variability, and it was subsequently discovered to have a 2nd outburst in 2010. This same source rebrightened again in 2012, and early spectra showed the same narrow-line profiles as before, suggesting another LBV-like eruption. We present new photometry and spectroscopy of SN 2009ip, indicating that its 3rd observed outburst in under 4 years appears to have transitioned into a genuine SN. The most striking discovery in these data is that unlike previous reports, the spectrum exhibited Balmer lines with very broad P-Cygni profiles characteristic of normal Type II supernovae (SNe II), in addition to narrow emission lines seen in SNe IIn and LBVs. Emission components have FWHM~8000 km/s, while the P-Cygni absorption component has blue wings extending to about -13,000 km/s. These features are typical of Type II SNe, but have never been seen in a nonterminal LBV-like eruption. Initially, the peak absolute magnitude of M_V~ -14.5 seemed fainter than that of normal SNe and faded much more rapidly. However, the source quickly brightened again to M_R=-17.6 mag, indicating that it is indeed a true SN. In this bright phase, the broad lines mostly disappeared, and the spectrum became dominated by broad-winged Lorentzian profiles of H-alpha and HeI that are characteristic of the early optically thick phases of luminous SNe IIn. We conclude that the most recent 2012 outburst of SN 2009ip is most likely a true core-collapse SN IIn that was initially faint, but then rapidly achieved high luminosities, as a result of interaction with circumstellar material (abridged).


Monthly Notices of the Royal Astronomical Society | 2012

The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova

Jon C. Mauerhan; Peter K. Blanchard; Daniel P. Cohen; Alexei V. Filippenko; Gary Li; Kyle Blanchard; Nathan Smith; S. Bradley Cenko; Chadwick F. E. Casper; Kelsey I. Clubb; Jeffrey M. Silverman

Some reports of supernova (SN) discoveries turn out not to be true core-collapse explosions. One such case was SN 2009ip, which was recognized to be a luminous blue variable (LBV) eruption. This source had a massive (50-80 Msun) hot progenitor star identified in pre-explosion data, it had documented evidence of pre-outburst variability, and it was subsequently discovered to have a 2nd outburst in 2010. This same source rebrightened again in 2012, and early spectra showed the same narrow-line profiles as before, suggesting another LBV-like eruption. We present new photometry and spectroscopy of SN 2009ip, indicating that its 3rd observed outburst in under 4 years appears to have transitioned into a genuine SN. The most striking discovery in these data is that unlike previous reports, the spectrum exhibited Balmer lines with very broad P-Cygni profiles characteristic of normal Type II supernovae (SNe II), in addition to narrow emission lines seen in SNe IIn and LBVs. Emission components have FWHM~8000 km/s, while the P-Cygni absorption component has blue wings extending to about -13,000 km/s. These features are typical of Type II SNe, but have never been seen in a nonterminal LBV-like eruption. Initially, the peak absolute magnitude of M_V~ -14.5 seemed fainter than that of normal SNe and faded much more rapidly. However, the source quickly brightened again to M_R=-17.6 mag, indicating that it is indeed a true SN. In this bright phase, the broad lines mostly disappeared, and the spectrum became dominated by broad-winged Lorentzian profiles of H-alpha and HeI that are characteristic of the early optically thick phases of luminous SNe IIn. We conclude that the most recent 2012 outburst of SN 2009ip is most likely a true core-collapse SN IIn that was initially faint, but then rapidly achieved high luminosities, as a result of interaction with circumstellar material (abridged).


Publications of the Astronomical Society of the Pacific | 2006

The Automated Palomar 60 Inch Telescope

S. Bradley Cenko; Derek B. Fox; Dae-Sik Moon; Fiona A. Harrison; S. R. Kulkarni; John R. Henning; C. Dani Guzman; Marco Bonati; Roger Smith; Robert P. Thicksten; Michael W. Doyle; Hal L. Petrie; Avishay Gal-Yam; Alicia M. Soderberg; Nathaniel L. Anagnostou; Anastasia C. Laity

We have converted the Palomar 60 inch (1.52 m) telescope from a classic night‐assistant‐operated telescope to a fully robotic facility. The automated system, which has been operational since 2004 September, is designed for moderately fast (t ≾ 3 minutes) and sustained (R ≾ mag) observations of gamma‐ray burst afterglows and other transient events. Routine queue‐scheduled observations can be interrupted in response to electronic notification of transient events. An automated pipeline reduces data in real time, which is then stored on a searchable Web‐based archive for ease of distribution. We describe here the design requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

Collaboration


Dive into the S. Bradley Cenko's collaboration.

Top Co-Authors

Avatar

Derek B. Fox

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eran O. Ofek

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. R. Kulkarni

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Silverman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Avishay Gal-Yam

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Peter E. Nugent

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Perley

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge