Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S C Scholes is active.

Publication


Featured researches published by S C Scholes.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2000

Comparison of friction and lubrication of different hip prostheses

S C Scholes; A. Unsworth

Abstract It is well documented that an important cause of osteolysis and subsequent loosening of replacement hip joints is polyethylene wear debris. To avoid this, interest has been renewed in metal-on-metal and ceramic-on-ceramic prostheses. Various workers have assessed the lubrication modes of different joints by measuring the friction at the bearing surfaces, using different lubricants. Measurements of friction factors of a series of hip prostheses were undertaken using carboxymethyl cellulose (CMC) fluids, silicone fluids, synovial fluid and different concentrations of bovine serum as the lubricant. The experimental results were compared with theoretical predictions of film thicknesses and lubrication modes. A strong correlation was observed between experiment and theory when employing CMC fluids or silicone fluids as the lubricant. Mixed lubrication was found to occur in the metal-on-metal (CoCrMo/CoCrMo) joints with all lubricants at a viscosity within the physiological range. This was also the case for the metal-on-plastic (CoCrMo/ultra-high molecular weight polyethylene) joints. The ceramic-on-ceramic (Al2O3/Al2O3) joints, however, exhibited full fluid film lubrication with the synthetic lubricants but mixed lubrication with the biological lubricants. Employing a biological fluid as the lubricant affected the friction to varying degrees when compared with the synthetic lubricants. In the case of the ceramic-on-ceramic joints it acted to increase the friction factor tenfold; however, for the metal-on-metal joints, biological fluids gave slightly lower friction than the synthetic lubricants did. This suggests that, when measuring friction and wear of artificial joints, a standard lubricant should be used.


Physics in Medicine and Biology | 2000

A frictional study of total hip joint replacements.

S C Scholes; A. Unsworth; A A J Goldsmith

Polymeric wear debris produced by articulation of the femoral head against the ultra-high-molecular-weight polyethylene socket of a total hip replacement has been implicated as the main cause of osteolysis and subsequent failure of these implants. Potential solutions to this problem are to employ hard bearing surface combinations such as metal-on-metal or ceramic-on-ceramic prostheses. The aim of this study was to investigate the difference in lubrication modes and friction of a range of material combinations using synthetic and biological fluids as the lubricants. The experimental results were compared with theoretical predictions of film thicknesses and lubrication modes. A strong correlation was observed between experiment and theory when employing carboxy methyl cellulose (CMC) fluids as the lubricant. Under these conditions the ceramic-on-ceramic joints showed full fluid film lubrication while the metal-on-metal, metal-on-plastic, diamond-like carbon-coated stainless steel (DLC)-on-plastic and ceramic-on-plastic prostheses operated under a mixed lubrication regime. With bovine serum as the lubricant in the all ceramic joints, however, the full fluid film lubrication was inhibited due to adsorbed proteins. In the metal-on-metal joints this adsorbed protein layer acted to reduce the friction while in the ceramic coupling the friction was increased. The use of bovine serum as the lubricant also significantly increased the friction in both the metal-on-plastic and ceramic-on-plastic joints. The friction produced by the DLC-on-plastic joints depended on the quality of the coating. Those joints with a less consistent coating and therefore a higher surface roughness gave significantly higher friction than the smoother, more consistently coated heads.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2006

The effects of proteins on the friction and lubrication of artificial joints.

S C Scholes; A. Unsworth

Abstract The tribological testing of artificial hip and knee joints in the laboratory has been ongoing for several decades. This work has been carried out in an attempt to simulate the loading and motion conditions applied in vivo and, therefore, the potential for the success of the joint. However, several different lubricants have been used in these tests. The work documented in this paper compares results obtained using different lubricants and makes suggestions for future work. Hip joints and knee joints of different material combinations were tested in a friction simulator to determine their friction and lubrication properties. Both carboxymethyl cellulose (CMC) fluids and bovine serum (with CMC fluids added) were used as the lubricants. These were prepared to various viscosities to produce the Stribeck plots. Human synovial fluid, of just one viscosity, was used as the lubricant with some of the joints to give a true comparison with physiological lubricants. The results showed that, in most cases, the lubricant had a significant effect on the friction developed between the joint surfaces. This is thought to be due to the proteins that are present within the bovine serum adsorbing to the bearing surfaces, creating ‘solid-like’ films which rub together, protecting the surfaces from solid-to-solid contact. This would be beneficial in terms of wear but can either increase or decrease the friction between the contacting surfaces. It is important to simulate the conditions in vivo as closely as possible when testing these joints to try to obtain a better comparison between the joints and to simulate more accurately the way that these joints will operate in the body. In an attempt to simulate synovial fluid, bovine serum seems to be the most popular lubricant used at present. It would be beneficial, however, to develop a new synthetic lubricant that more closely matches synovial fluid. This would allow us to predict more accurately how these joints would operate long term in vivo.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2001

The wear of metal-on-metal total hip prostheses measured in a hip simulator

S C Scholes; Sarah Green; A. Unsworth

Abstract New generation metal-on-metal prostheses have been introduced to try and overcome the problem of osteolysis often attributed to the wear particles of the polyethylene component of conventional metal-on-ultra-high molecular weight polyethylene (UHMWPE) joints. The wear rates of four metal-on-metal joints (two different clearances) were assessed along with that of a conventional metal-on-UHMWPE joint. Friction measurements of the metal-on-metal joints were taken before and after the wear test and compared. Two distinct wear phases were discernible for all the metal-on-metal joints: an initial wear phase up to 0.5 × 106 cycles and then a lower steady state wear phase. The steady state wear rate of the 22 μUm radial clearance metal-on-metal joint was lower than that for the 40 μUm radial clearance joint, although this difference was not found to be significant (p > 0.15). The wear rates for all the joints tested were consistent with other simulator studies. The friction factors produced by each joint were found to decrease significantly after wear testing (p < 0.05).


Journal of Materials Science: Materials in Medicine | 2009

Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials

S C Scholes; A. Unsworth

It is well known that a reduction in the volume of wear produced by articulating surfaces in artificial joints is likely to result in a lower incidence of failure due to wear particle induced osteolysis. Therefore, new materials have been introduced in an effort to produce bearing surfaces with lower, more biologically acceptable wear. Polyetheretherketone (PEEK-OPTIMA) has been successfully used in a number of implant applications due to its combination of mechanical strength and biocompatibility. Pin-on-plate wear tests were performed on various combinations of PEEK-OPTIMA and carbon fibre reinforced PEEK-OPTIMA (CFR-PEEK) against various CoCrMo alloys to assess the potential of this material combination for use in orthopaedic implants. The PEEK/low carbon CoCrMo produced the highest wear. CFR-PEEK against high carbon or low carbon CoCrMo provided low wear factors. Pin-on-plate tests performed on ultra-high molecular weight polyethylene (UHMWPE) against CoCrMo (using comparable test conditions) have shown similar or higher wear than that found for CFR-PEEK/CoCrMo. This study gives confidence in the likelihood of this material combination performing well in orthopaedic applications.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2006

The effect of 'running-in' on the tribology and surface morphology of metal-on-metal Birmingham hip resurfacing device in simulator studies.

K Vassiliou; Alistair Elfick; S C Scholes; A. Unsworth

Abstract It is well documented that hard bearing combinations show a running-in phenomenon in vitro and there is also some evidence of this from retrieval studies. In order to investigate this phenomenon, five Birmingham hip resurfacing devices were tested in a hip wear simulator. One of these (joint 1) was also tested in a friction simulator before, during, and after the wear test and surface analysis was conducted throughout portions of the testing. The wear showed the classical running in with the wear rate falling from 1.84 mm3 per 106 cycles for the first 106 cycles of testing to 0.24 mm3 per 106 cycles over the final 2 × 106 cycles of testing. The friction tests suggested boundary lubrication initially, but at 1 × 106 cycles a mixed lubrication regime was evident. By 2 × 106 cycles the classical Stribeck curve had formed, indicating a considerable contribution from the fluid film at higher viscosities. This continued to be evident at both 3 × 106 and 5 × 106 cycles. The surface study complements these findings.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008

Tribological assessment of a flexible carbon-fibre-reinforced poly(ether—ether—ketone) acetabular cup articulating against an alumina femoral head

S C Scholes; I A Inman; A. Unsworth; E Jones

New material combinations have been introduced as the bearing surfaces of hip prostheses in an attempt to prolong their life by overcoming the problems of failure due to wear-particle-induced osteolysis. This will hopefully reduce the need for revision surgery. The study detailed here used a hip simulator to assess the volumetric wear rates of large-diameter carbon-fibre-reinforced pitch-based poly(ether—ether—ketone) (CFR-PEEK) acetabular cups articulating against alumina femoral heads. The joints were tested for 25×106 cycles. Friction tests were also performed on these joints to determine the lubrication regime under which they operate. The average volumetric wear rate of the CFR-PEEK acetabular component of 54 mm diameter was 1.16 mm3/106 cycles, compared with 38.6 mm3/106 cycles for an ultra-high-molecular-weight polyethylene acetabular component of 28 mm diameter worn against a ceramic head. This extremely low wear rate was sustained over 25×106 cycles (the equivalent of up to approximately 25 years in vivo). The frictional studies showed that the joints worked under the mixed—boundary lubrication regime. The low wear produced by these joints showed that this novel joint couple offers low wear rates and therefore may be an alternative material choice for the reduction of osteolysis.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2006

Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint

S C Scholes; I C Burgess; H R Marsden; A. Unsworth; E Jones; N Smith

Abstract Total joint replacements (TJRs) have a limited lifetime, but the introduction of components that exhibit good lubricating properties with low friction and low wear could extend the life of TJRs. A novel acetabular cup design using polyurethane (PU) as a compliant layer (to mimic the natural joint) has been developed. This study describes a series of friction tests that have been used to select the most appropriate material, optimize the design parameters, and fine-tune the manufacturing processes of these joints. To determine accurately the mode of lubrication under which these joints operate, a synthetic lubricant was used in all these tests. Friction tests were carried out to assess the lubrication of four PU bearing materials. Corethane 80A was the preferred material and was subjected to subsequent testing. Friction tests conducted on acetabular cups, manufactured using Corethane 80A articulating against standard, commercially available femoral heads, demonstrated friction factors approaching those for full-fluid-film lubrication with only approximately 1 per cent asperity contact. As the joint produces these low friction factors within less than half a walking cycle after prolonged periods of loading, start-up friction was not considered to be a critical factor. Cups performed well across the full range of femoral head sizes, but a number of samples manufactured with reduced radial clearances performed with higher than expected friction. This was caused by the femoral head being gripped around the equator by the low clearance cup. To avoid this, the cup design was modified by increasing the flare at the rim. In addition to this the radial clearance was increased. As the material is incompressible, a radial clearance of 0.08 mm was too small for a cup diameter of 32 mm. A clearance of between 0.10 and 0.25 mm produced a performance approaching full-fluid-film lubrication. This series of tests acted as a step towards the optimization of the design of these joints, which has now led to an in vivo ovine model.


Journal of Materials Science: Materials in Medicine | 2001

Pin-on-plate studies on the effect of rotation on the wear of metal-on-metal samples.

S C Scholes; A. Unsworth

An important cause of osteolysis and subsequent loosening of replacement hip joints is the bodys biological response to polyethylene wear debris. Interest has thus been renewed in hard bearing surfaces such as metal-on-metal implants. Tests were performed on a pin-on-plate machine to determine the effects of pin rotation on the wear of two different compositions of cobalt chrome molybdenum (CoCrMo) against itself (high carbon and low carbon). With reciprocating motion only, the low carbon material gave an order of magnitude higher wear than the high carbon material. The overall wear (that for both the pin and the plate) was significantly reduced with added rotation for the low carbon material but remained approximately the same for the high carbon material. However, the wear of the low carbon material was not reduced below that of the high carbon material which remained the best material in terms of wear.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2005

Design aspects of compliant, soft layer bearings for an experimental hip prosthesis

S C Scholes; A. Unsworth; J M Blamey; I C Burges; E Jones; N Smith

Abstract Currently, an artificial hip joint can be expected to last, on average, in excess of 15 years with failure due, in the majority of cases, to late aseptic loosening of the acetabular component. A realistic alternative to the problem of wear in conventional joints is the introduction of bearing surfaces that exhibit low wear and operate in the full fluid-film lubrication regime. Contact analyses and friction tests were performed on compliant layer joints (metal-on-polyurethane) and the design of a prototype ovine arthroplasty model was investigated. When optimized, these components have been shown to achieve full fluid-film lubrication.

Collaboration


Dive into the S C Scholes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dj Langton

University Hospital of North Tees

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge